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We propose a new approach to provide wideband multi-mode four-wave mixing, independent of the intrinsic waveguide dispersion. We adopt concepts from quantum mechanics and sub-wavelength engineering to design an effective photon well, with a graded potential along the waveguide cross section, that provides flexible control over the mode confinement. The selfadaptive nature of the waveguide boundary allows different spatial modes with equi-spaced frequencies and shared propagation wavevector, automatically fulfilling both, energy conservation and wavevector phase matching conditions. Capitalizing on this concept, we show

INTRODUCTION

Nonlinear processes like four-wave mixing (FWM) have garnered a great interest due to their unique capabilities for on-chip light generation, with an immense potential for the implementation of wideband sources for silicon photonics [START_REF] Cassan | Nonlinear Fiber Optics[END_REF][START_REF] Hansryd | Fiber-based optical parametric amplifiers and their applications[END_REF][START_REF] Leuthold | Nonlinear silicon photonics[END_REF][START_REF] Borghi | Nonlinear silicon photonics[END_REF]. Harnessing 3rd nonlinear Kerr effect in silicon already allowed the demonstration of promising frequency combs [START_REF] Xue | Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation[END_REF][START_REF] Singh | Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06μm to beyond 2.4μm[END_REF][START_REF] Stern | Battery-operated integrated frequency comb Generator[END_REF][START_REF] Guo | Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides[END_REF], optical parametric amplification [START_REF] Salem | Signal regeneration using low-power four-wave mixing on silicon chip[END_REF][START_REF] Foster | Broad-band optical parametric gain on a silicon photonic chip[END_REF][START_REF] Foster | Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides[END_REF][START_REF] Turner-Foster | Frequency conversion over two-thirds of an octave in silicon nanowaveguides[END_REF] and mid-infrared light sources in silicon [START_REF] Liu | Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides[END_REF][START_REF] Zlatanovic | Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source[END_REF][START_REF] Liu | Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation[END_REF]. A great effort has been devoted to compensate both the intrinsic material dispersion and the nonlinearityinduced dispersion, that hamper phase matching which is key to maximize the efficiency of FWM processes [START_REF] Hansryd | Fiber-based optical parametric amplifiers and their applications[END_REF]. Nevertheless, achieving broadband phase-matching in simple-to-fabricate and fabrication-tolerant silicon waveguides remains an open question. Optimization of transversal dimensions of conventional strip waveguides, provided phase-matching in a relatively narrow wavelength ranges, thus compromising the bandwidth of the nonlinear wavelength conversion processes [START_REF] Salem | Signal regeneration using low-power four-wave mixing on silicon chip[END_REF][START_REF] Foster | Broad-band optical parametric gain on a silicon photonic chip[END_REF][START_REF] Foster | Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides[END_REF][START_REF] Turner-Foster | Frequency conversion over two-thirds of an octave in silicon nanowaveguides[END_REF][START_REF] Liu | Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides[END_REF][START_REF] Zlatanovic | Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source[END_REF][START_REF] Liu | Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation[END_REF]. Broadband phase-matching has been shown based on optimization of high order diffraction terms, e.g. 4th order waveguide dispersion [START_REF] Foster | Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides[END_REF], or by implementing rib geometries [START_REF] Turner-Foster | Frequency conversion over two-thirds of an octave in silicon nanowaveguides[END_REF]. Yet, the proposed solutions require complex fabrication processes, with deposition of different materials, or tight control of rib and slab thicknesses. On the other hand, photonic crystal (PhC) waveguides with flexible dispersion properties, high confinement and large group velocities were also considered as a FWM photonic platform [START_REF] Mcmillan | Observation of four-wave mixing in slow-light silicon photonic crystal waveguide[END_REF][START_REF] Monat | Four-wave mixing in slow light engineered silicon photonic crystal waveguides[END_REF]. However, the bandgap guiding in PhC waveguides results in a limited bandwidth and a high sensitivity to fabrication imperfections that substantially increase propagation loss and distort dispersion properties. An alternative approach to dispersion-engineered waveguides is the use of photonic cavities to effectively enhance the light-matter nonlinear interactions by resonant enhancement and phase-matching among different cavity modes modes. This method was demonstrated in various configurations, including single rings [START_REF] Xue | Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation[END_REF][START_REF] Singh | Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06μm to beyond 2.4μm[END_REF][START_REF] Stern | Battery-operated integrated frequency comb Generator[END_REF][START_REF] Guo | Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides[END_REF][START_REF] Azzini | Ultra-low power generation of twin photons in a compact silicon ring resonator[END_REF], coupled rings [START_REF] Morichetti | Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced alloptical wavelength conversion[END_REF][START_REF] Zeng | Design of triply-resonant microphotonic parametric oscillators based on Kerr nonlinearity[END_REF][START_REF] Zeng | Four-wave mixing in silicon coupled-cavity resonators with port-selective, orthogonal supermode excitation[END_REF],

and coupled nanobeam cavities [START_REF] Azzini | Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities[END_REF][START_REF] Lin | High-efficiency degenerate four-wave mixing in triply resonant nanobeam cavities[END_REF]. Concurrently, PhC cavities with parabolic mirror designs were also proposed for nonlinear frequency comb generation [START_REF] Sumetsky | Surface nanoscale axial photonics[END_REF][START_REF] Oreshnikov | Multiple nonlinear resonances and frequency combs in bottle microresonators[END_REF][START_REF] Suchkov | Frequency comb generation in SNAP bottle resonators[END_REF][START_REF] Combrie | Comb of high-Q Resonances in a Compact Photonic Cavity[END_REF]. Though these demonstrations showed promising performance, their broadband operation is hampered by tradeoffs in phase matching and spatial overlaps. Fig. 1. Schematic of degenerate four wave mixing operating in a single-mode waveguide with anomalous dispersion (a) and operating within an inter-modal scheme regardless the absolute dispersion provided that all dispersion curves are obtained by translating the same curve with a constant frequency step (e.g. 21=10 here).

Here, we propose a new strategy to satisfy both phase matching and energy conservation conditions in an ultra-broad wavelength range. Rather than tuning the waveguide dimensions to yield anomalous dispersion, we shape the index profile of the waveguide to support different spatial modes with the same propagation constant and equal frequency spacing, ensuring phase matching and energy conservation, respectively. In the conventional single-mode FWM approach, depicted in Fig. 1(a), energy is transferred from the pump into signal and idler propagating in the fundamental waveguide mode with different propagation constants. Thus, precise control of dispersion is required to fulfill phase matching condition (2kzP=kzS+kzI). In the proposed multi-mode FWM approach, see Fig. 1(b), energy is transferred from the pump into signal and idler propagating in different waveguide modes with the same propagation constant (kzP=kzS=kzI). Therefore, the phase matching condition is automatically satisfied. Concurrently, energy conservation requires equal frequency spacing. Then, the bandwidth of the proposed scheme does not depend on the exact dispersion of the waveguide, but on the relative slopes of the dispersion curves of the modes, determining the wavelength range where energy conservation is fulfilled. We adopt concepts from quantum mechanics and sub-wavelength engineering to design an effective photon well with a graded potential along the waveguide cross section, yielding a different spatial confinement for each waveguide mode. This self-adaptive boundary simultaneously provides equal frequency spacing, parallel dispersion curves and large spatial overlap among different waveguide modes, overcoming the major bandwidth and efficiency limitations of conventional approaches.

Compared to previous demonstrations using inter-modal FWM [START_REF] Cheng | Intermodal four-wave mixing in a higher-order-mode fiber[END_REF][START_REF] Friis | Inter-modal four-wave mixing study in a two-mode fiber[END_REF][START_REF] Signorini | Intermodal four-wave mixing in silicon waveguides[END_REF][START_REF] Kittlaus | On-chip inter-modal Brillouin scattering[END_REF], our work presents a more systematic and controllable strategy with clear analytical explanation. Unlike previous works that relied on parabolic photonic wells along the propagation direction in photonic cavities [START_REF] Combrie | Comb of high-Q Resonances in a Compact Photonic Cavity[END_REF], we exploit a self-adaptive boundary effect in waveguides with a photonic well in the transverse direction to light propagation. This method facilitates broadband wavelength operation compared to the cavity-based four-wave mixing. We also demonstrate that a parabolic guide profile is not essential to obtain a quasi-universal phase matching condition in multimode waveguides with propagative modes. Last, we also show the remarkable flexibility of the proposed approach, allowing large conversion span, with a material-independence design method compatible with sub-wavelength and/or suspended membrane waveguides.

FREQUENCY SPACINGS OF A STEP-INDEX TWO-DIMENSION (SLAB)

WAVEGUIDE

In order to present the step-by-step concepts, we start here with the simplified case of a slab step-index waveguide, while realistic 3D waveguides corresponding to photonic integration standards are discussed in sections 3 and 4. Let us consider the two-dimension (infinite depth along the x axis) step-index slab waveguide presented in the inset of Fig. 2(a). The eigen equation for modes propagating along the 𝑧 axis with an electric field polarized along 𝑦 axis reads as [START_REF] Okamoto | Fundamentals of Optical Waveguides[END_REF]:

ℎ𝑎 = 𝑚𝜋 2 + 𝑎𝑟𝑐𝑡𝑎𝑛( 𝛾𝑛 𝑤 2 ℎ𝑛 𝑐 2 ) (1) 
where 𝑛 𝑤 and 𝑛 𝑐 are the material index of waveguide core and cladding, while ℎ = √(𝑘 0 2 𝑛 𝑤 2 -𝑘 z 2 ) and 𝛾 = √(𝑘 z 2 -𝑘 0 2 𝑛 𝑐 2 ) are the wavevector along the 𝑦 axis, inside and outside the waveguide core, respectively. Silicon and silicon dioxide are chosen here as the core and cladding materials, considering material dispersion. The waveguide width 2𝑎 was set at 700nm which is enough to support 4 modes with effective index values higher than 2. From Equ. (1) we obtain the dispersion curves for the first four order modes (with corresponding mode order 𝑚=0, 1, 2, 3), shown Fig. 2(a). The frequency spacings change in a nonlinear manner with the mode order 𝑚, resulting in an uneven spacing that precludes the satisfaction of energy conservation required for the proposed multi-mode FWM approach. Schematic of a photonic well described by the cut-off frequency for photon propagating along 𝑧 axis with wavevector 𝑘 𝑧 .

To better understand the evolution of frequency spacing ∆𝜔 𝑚 , we consider the derivative of the mode frequency with respect to the mode order. which gives a good explanation on the monotonous and nonlinear evolution of ∆𝜔 𝑚 observed in Fig. 2(b). This confirms that the analytical frequency spacing 𝑑𝜔 𝑑𝑚 is a useful and simple tool to investigate how the frequency spacing evolves with the waveguide dimension and the index profile.

The step-index slab waveguide can be understood from the point of view of quantum wells, just by considering the cut-off frequencies for the core (𝑘 𝑧 𝑐/𝑛 𝑤 ) and cladding (𝑘 𝑧 𝑐/𝑛 𝑐 ), for a given wavevector 𝑘 𝑧 [START_REF] Eichenfield | Optomechanical crystals[END_REF][START_REF] Alpeggiani | Effective bichromatic potential for ultrahigh Q-factor photonic crystal slab cavities[END_REF][START_REF] Simbula | Realization of high-Q/V photonic crystal cavities defined by an effective Aubry-André -Harper bichromatic potential[END_REF]. Then, the behavior of frequency spacings is similar to the solutions of harmonic oscillator in a finite-depth potential well. The square potential well formed by the stepindex waveguide, depicted in Fig. 2(d), results in unevenly spaced frequencies. Conversely, it is well known that parabolic potential wells yield equi-spaced frequencies [START_REF] Combrie | Comb of high-Q Resonances in a Compact Photonic Cavity[END_REF]. Therefore in the following section we study the influence of the index profile in the frequency separation of the modes.

FREQUENCY SPACINGS OF A GRADED-INDEX SLAB WAVEGUIDE WITH SELF-ADAPTIVE BOUNDARY

In this section we study the frequency spacing ∆𝜔 𝑚 for a 2D graded-index slab waveguide, with a nonuniform index profile described by 𝑛(y) = (𝐴 + 𝐵𝑦) 𝑝 . By changing the value of 𝑝, the index profile can be made linear (𝑝 = 1) or nonlinear (𝑝 ≠ 1). The waveguide width is 2𝑎, and the indices for the waveguide core, waveguide edge and cladding are 𝑛(0) = 𝑛 𝑐𝑒𝑛𝑡 , 𝑛(𝑎) = 𝑛 𝑏 , and 𝑛(|𝑦| > 𝑎) = 𝑛 𝑐 , as displayed in Fig. 3(a). From the analytical solution of the wave equation for this graded-index waveguide [START_REF] Okamoto | Fundamentals of Optical Waveguides[END_REF] (see Supplementary Information), it follows that the field distribution inside the waveguide core follows a cosinus-like profile while the guide index is larger than the mode effective index (𝑛(𝑦) > 𝑛 𝑒𝑓𝑓 ) and an exponentially decaying profile otherwise (𝑛(𝑦) < 𝑛 𝑒𝑓𝑓 ). An effective mode width, [-𝐿 𝑚 , 𝐿 𝑚 ] can be defined as the region where the 𝑛(𝑦) > 𝑛 𝑒𝑓𝑓 , i.e. where mode profile exhibits a cosinus-like shape. Then, as each mode has a different effective index, each mode also has a different effective width. This different confinement effect is illustrated in Fig

3(a)
, that shows the analytical field profile for the first three waveguide modes. Such a wave confining method, based on the index profile with condition 𝑛 𝑒𝑓𝑓 > 𝑛 𝑏 , is then defined as "selfadaptive boundary (SAB)" hereafter. I propose to move the explanations of eq. 3-11 to the supplementary information. First, we consider a linear index profile, i.e. 𝑝 = 1 and 𝑛(y) = 𝐴𝑦 + 𝐵 . With this profile, the frequency spacings can be described as (see Supplementary Information S2): In the following section we present several realistic implementations of this type of multimode graded waveguides, chosen to illustrate the method. However, we would like to highlight the very general nature of the proposed approach, which can be seamlessly adapted to all types of geometries, photonic platforms (Si, III/V, polymer guides, etc.), and spectral ranges (near infrared, medium infrared).

𝑑𝜔 𝑑𝑚 = -𝐴𝜋𝑐/ [𝑛 𝑒𝑓𝑓 2 𝑙𝑜𝑔 (√ 𝑛 𝑐𝑒𝑛𝑡 2 𝑛 𝑒𝑓𝑓,𝑚 2 -1 + 𝑛 𝑐𝑒𝑛𝑡 𝑛 𝑒𝑓𝑓,𝑚 ) + 𝑛 𝑐𝑒𝑛𝑡 √𝑛 𝑐𝑒𝑛𝑡 2 -𝑛 𝑒𝑓𝑓,𝑚 2 ] (3) 

GRADED-PROFILE THREE-DIMENSION WAVEGUIDE WITH SELF-ADAPTIVE BOUNDARY

The self-adaptive boundary presented in previous section, which conceptually inherits from the ability of non-uniform potential well, provides equi-spaced frequency modes sharing the same propagation constant, as shown in Fig. 4. One further step is to verify this method in a more practical situation, i.e. with three-dimensional waveguides. As a large index change along the waveguide cross-section is not always feasible from the material point of view, an alternative approach is to implement this graded index profile through nanostructured subwavelength grating (SWG) engineering. By periodically combining high-index and low-index sections with a pitch shorter than half of the wavelength, subwavelength gratings allow the implementation of a material with a synthetic refractive index that can be tuned at will between those of the high and low index materials [START_REF] Ortega | Analysis of "Quasi-Modes" in Periodic Segmented Waveguides[END_REF][START_REF] Halir | Waveguide sub-wavelength structures: a review of principles and applications[END_REF][START_REF] Cheben | Subwavelength integrated photonics[END_REF]. In Fig. 4(a), the unit cell of two types of periodically-structured subwavelength waveguides are presented for illustration. Here, the gradual index variation is implemented by apodization of the waveguide length or size of the engraved holes. Based on this index-equivalent effective material method and the Marcatili's waveguide approximation, we are again able to semi-analytically investigate the three-dimensional waveguide (Detailed in Supplementary Information S3). ). We have to mention that this result came from the operation of first 3 modes as a demonstration. However, this design strategy can be scaled up to higher order modes, e.g. 5 modes. As mentioned earlier, these capabilities arise from the self-adaptive boundary (SAB) condition 𝑛 𝑒𝑓𝑓,𝑚 > 𝑛 𝑏 , ∀𝑚 which is more than a simple graded-profile condition. In the Supplementary Material S4, we analytically show that a multimode gradedindex waveguide with a classical condition 𝑛 𝑒𝑓𝑓 < 𝑛 𝑏 cannot equalize frequency spacings between its modes since it adopts the same effective boundary for different modes as in a stepindex waveguide.

In addition to the demonstrated capability and flexibility of the proposed approach for degenerate four-wave mixing, the nonlinearities-induced phase mismatch can be considered here as well.

The phase matching considering nonlinearities is described [START_REF] Hansryd | Fiber-based optical parametric amplifiers and their applications[END_REF][START_REF] Foster | Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides[END_REF] as ∆𝑘 = 2𝛾𝑃 𝑃 -(2𝑘 𝑧𝑃 -𝑘 𝑧𝑆 -𝑘 𝑧𝐼 ), which is governed by the nonlinear part 2𝛾𝑃 𝑃 and linear part ∆𝑘 𝐿 = 2𝑘 𝑧𝑃 -𝑘 𝑧𝑆 -𝑘 𝑧𝐼 . Since 2𝛾𝑃 𝑃 is normally positive in silicon, the linear dispersion ∆𝑘 𝐿 needs to be a bit larger than zero to fulfill the global phase matching condition, which is classically addressed by tuning the dispersion to its anomalous regime in a classical waveguide. In contrast, in our case, the condition is translated to the fact that: the frequency spacing ∆ω SP should be slightly different from ∆ω PI , which can be easily achieved just by slightly moving the operating point of pump wave, as illustrated in Fig. 5(a).

If the condition that ∆ω SP = ∆ω 21 - the effective nonlinear Kerr nonlinearity γ can be described [START_REF] Serna | Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared Experimental GVD engineering in slow light slot photonic crystal waveguides[END_REF][START_REF] Santagiustina | Theory of slow light enhanced four-wave mixing in photonic crystal waveguides[END_REF] 

∭ 𝐸 𝑦𝑆 •𝐸 𝑦𝑃 •𝐸 𝑦𝑃 * •𝐸 𝑦𝐼 * 𝑑𝑟 3 ∭ |𝐸 𝑦𝑃 | 2 𝑑𝑟 3 √∭ |𝐸 𝑦𝑆 | 2 𝑑𝑟 3 •√∭ |𝐸 𝑦𝐼 | 2 𝑑𝑟 3
in a single unit cell [START_REF] Signorini | Intermodal four-wave mixing in silicon waveguides[END_REF], which gives a value of 0.12.,𝐸 𝑦𝑆 , 𝐸 𝑦𝑃 and 𝐸 𝑦𝐼 corresponding to the field of signal wave, pump wave and idler waves. ) obtained from Fig. 5(b), we can predict an 3dB tunable bandwidth of around 1THz (~10nm) for a 1mm long waveguide. 𝑉 𝑔2 and 𝑉 𝑔0 are corresponding to the 2nd and fundamental modes, respectively By generalizing this approach, the 3dB tunable bandwidth as a function of waveguide length can be plotted in Fig. 5(d). It can therefore be seen that, even in a non-optimized waveguide, the spectral operating band of the FWM process is as wide as few tens of nanometers for sub-millimeter long waveguide. With all these results, we have successfully demonstrated the feasibility of using a multimode SWG waveguide with self-adaptive boundary for degenerate FWM, based on the interaction among the first three modes. However, nonlinear processes are not strictly limited to this scenario. Using higher order modes (e. g. fundamental mode, 2nd mode and 4th mode), FWM process could be further scaled to even larger conversion spans by using the same method, for example to directly convert near-infrared waves to nearly mid-infrared waves. Most importantly, since the proposed approach no longer requires specific normal/anomalous dispersion, we can easily adopt this approach to any other platforms, no matter what kinds of dispersion the waveguide modes exhibit.

As an illustrative example of the highly adaptable nature of the method to different platforms with different thicknesses, targeting different frequency ranges, etc, we investigated its application to different situations. Using, 3D FDTD method and considering material dispersion, we calculated the dispersion curves for Si sub-wavelength waveguides with Si thicknesses ranging between 220nm and 600nm. For the 220nm-thick Si waveguide with parameters 𝑎=700nm, 𝑏=300nm, the optimized position for ∆ω 21 =∆ω 10 is located at wavevector around 𝑘 𝑧 = 0.95 × 10 7 m-1, leading to a conversion span from 220 THz to 180 THz, as shown in Fig. 6(a). By raising 𝑎 and reducing 𝑏 to 750nm and 250 nm, we have been able to shift the optimized position continuously to 𝑘 𝑧 = 1.53 × 10 7 m-1,with starting and stop frequencies of 280 THz to 245 THz, respectively. In order to push the operation point to a lower frequency, with the purpose of generating light wavelengths up to 2𝜇𝑚, larger waveguide cross-sections can be considered. Very interestingly, by simply enlarging the thickness to 600nm, the working frequency for the fundamental mode can be shifted to around 155THz, with conversion span over 40THz (from 1.53μm to 1.93μm, i.e. 400 nm), as shown in Fig. 6(c), with almost no displacement on 𝑘 𝑧 . Similar result can also be observed in another configuration (𝑎=750nm, 𝑏=250nm), with a slightly shifted working point 𝑘 𝑧 .These gathered results unambiguously show the simplicity and flexibility of our approach for degenerate four-wave mixing, i. e., 1) for each waveguide thickness the waveguide is capable to offer adjustable working conditions in a wide frequency range, within a varying index-profile; 2) for a certain optimal lineshape, the strategy for shifting the working wavelength, is to simply adjust the thickness.

CONCLUSION

With thorough analytical explanation and numerical confirmation, we show that waveguides with material-engineered graded index profile (unambiguous condition that 𝑛 𝑒𝑓𝑓 > 𝑛 𝑏 ) can be designed to support the modes that adapt themselves to different effective boundaries ("selfadaptive boundary"), according to their effective index values. This self-adaptive behavior, that relies on similar concepts as those found for potential wells, provides new degrees of freedom to achieve simultaneous satisfaction of both the energy conservation and phase matching, regardless the intrinsic dispersion of the considered optical waveguide modes. This strategy, that can be adapted to different wavelength ranges and material platforms, opens a new design space for degenerate FWM. Capitalizing on this concept, we show that phase-matching condition can be satisfied over 400nm (bridging from telecom wavelength to almost 2μm) by employing three waveguide modes. This range could be further expanded by using higher order modes enabled by flexible index profile optimization. We foresee that the self-adaptive boundary concept will expedite the development of a new generation of nonlinear circuits with an immense potential for light generation in mid-infrared wavelength, but also for nonlinear process beyond FWM and applications in which dispersion manipulation is of major relevance.

SUPPLEMENTARY MATERIAL

S1 Calculation for a step-index two-dimensional waveguide; S2 Calculation for a gradedindex two-dimension waveguide with self-adaptive boundary (𝑛 𝑒𝑓𝑓 > 𝑛 𝑏 ); S3 Semi-analytical calculation for a graded-profile three-dimensional waveguide with self-adaptive boundary (𝑛 𝑒𝑓𝑓 > 𝑛 𝑏 ); S4 Discussion on a graded-index waveguide with classical condition 𝑛 𝑒𝑓𝑓 < 𝑛 𝑏 .
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As introduced in the text, for a two-dimension (infinite depth along 𝑥 axis) step-index waveguide, the eigen equation for modes propagating along 𝑧 axis with electric field polarizing along 𝑦 axis can be described as ℎ𝑎 = 

𝑛 𝑏 2 √(𝑛 𝑒𝑓𝑓 2 -𝑛 𝑐 2 ) 𝑛 𝑐 2 √(𝑛 𝑏 2 -𝑛 𝑒𝑓𝑓 2 )
) accounts for the abrupt index change on the boundary. The related first derivatives can be written as: 

𝑑𝑓 𝑚1 𝑑𝑛 𝑒𝑓𝑓 = 2𝑘 𝑧 𝜋 𝑑 𝑑𝑛 𝑒𝑓𝑓 (𝑎√ 𝑛 𝑤 2 𝑛 𝑒𝑓𝑓 2 -1) = -2𝑎𝑘 𝑧 𝑛 𝑤 2 𝜋𝑛 𝑒𝑓𝑓 2 √𝑛 𝑤 2 -𝑛 𝑒𝑓𝑓 2 (S3) 𝑑𝑓 𝑚2 𝑑𝑛 𝑒𝑓𝑓 = - 2 𝜋 • 𝑑 𝑑𝑛 𝑒𝑓𝑓 𝑎𝑟𝑐𝑡𝑎𝑛( 𝛾𝑛 𝑤 2 ℎ𝑛 𝑐 2 ) = - 2 𝜋 • 1 1+ 𝑛 𝑏 4 (𝑛 𝑒𝑓𝑓 2 -𝑛 𝑐 2 ) 𝑛 𝑐 4 (𝑛 𝑏 2 -𝑛 𝑒𝑓𝑓 2 ) • 𝑑 𝑑𝑛 𝑒𝑓𝑓 ( 𝑛 𝑏 2 √(𝑛 𝑒𝑓𝑓 2 -𝑛 𝑐 2 ) 𝑛 𝑐 2 √(𝑛 𝑏 2 -𝑛 𝑒𝑓𝑓 2 ) ) = - 2 𝜋 • 𝑛 𝑒𝑓𝑓 -1+𝑛 𝑒𝑓𝑓 2 (1/𝑛 𝑐 2 +1/𝑛 𝑤 2 ) • 1 √(𝑛 𝑒𝑓𝑓 2 -𝑛 𝑐 2 ) • 1 √(𝑛 𝑤 2 -𝑛 𝑒𝑓𝑓 2 ) (S4)

S2. CALCULATING THE 𝒅𝝎/𝒅𝒎 OF A GRADED-INDEX TWO-DIMENSION WAVEGUIDE WITH SELF-ADAPTIVE BOUNDARY (𝒏 𝒆𝒇𝒇 > 𝒏 𝒃 )

We consider a 2D graded-index slab waveguide (then with graded cut-off potential) with a waveguide width of 2𝑎. The indices for the waveguide core, waveguide edge and cladding are 𝑛(0) = 𝑛 𝑐𝑒𝑛𝑡 , 𝑛(𝑎) = 𝑛 𝑏 and 𝑛 𝑐 , respectively, as displayed in Fig. S1. we propose to systematically rely on a nonuniform index profile 𝑛(𝑦). When we introduce a condition that the effective indices of the modes are larger than the physical boundary index (i.e. 𝑛 𝑒𝑓𝑓 > 𝑛(𝑎) = 𝑛 𝑏 for all the guided modes) into the index profile, the waveguide can be considered as splitting

𝐻 𝑥 = 𝐴 1 -𝑐𝑜𝑠ℎ[𝐷(𝑦)] + 𝐵 1 -𝑠𝑖𝑛ℎ[𝐷(𝑦)], -𝑎 < 𝑦 ≤ 𝐿 (S9) 𝐻 𝑥 = 𝐴 2 -𝑒𝑥𝑝 [𝑘 0 √𝑛 𝑒𝑓𝑓 2 -𝑛 𝑐 2 • (𝑦 + 𝑎)] , -𝑎 ≥ 𝑦 (S10)
in which the 𝐴 1,2 + and 𝐵 1,2 + are the amplitudes of the decaying components for the positive direction, while 𝐴 1,2 -and 𝐵 1,2 -stand for the negative direction. 𝜑 is the biased phase that is related to the mode order (𝜑 = 0 or 𝜑 = 𝜋 2 ⁄ , with respect to modes of symmetric and anti-symmetric parities). The pattern of zone 0 and zones, ∓2 jointly determine the hyperbolic form of part 1.

Due to the varying index profile, currently the total phases of the wave propagation along the 𝑦 axis inside the waveguide can be transformed to the integrals of position-related wavevector √(𝑘 0 2 𝑛 2 (𝑦) -𝑘 𝑧 2 ) to 𝑦 coordinate (𝑁 𝑚 and 𝐷 𝑚 stand with respect to zone 0 and zones ∓1, respectively): As an example of the possible design of three-dimensional graded-profile waveguides with a self-adaptive boundary, a subwavelength grating (SWG) waveguide with a period of 150nm is chosen, which the geometry is depicted in Fig. S2. The material considered here are silicon and air, for the high-index and low-index regions, respectively. As the SWG is able to be considered as being made of equivalent materials, the strategy here to achieve the graded-profile (gradedindex) waveguide is tapering the component width of silicon, from the center to the edge, while keeping the period fixed. In this case, the width of silicon components is changed from 150nm to 40nm, i. e. adjusting the filling factor from 1 to 0.267. According to the well-known equivalent properties of waveguide, the index of SWG waveguide can be described as:

𝑁 𝑚 (𝑦) = ∫ √(𝑘 0 2 𝑛 2 (𝑦) -𝑘 𝑧 2 ) 𝐿 𝑚 0 𝑑𝑦 ( 
𝑛 𝑆𝑊𝐺 (𝑦) = √𝜂𝑛 𝑐𝑒𝑛𝑡 2 + (1 -𝜂)𝑛 𝑐 2 = √𝜂(𝑛 𝑐𝑒𝑛𝑡 2 -𝑛 𝑐 2 ) + 𝑛 𝑐 2 (S19)
which leads to an index ranging from around 3.48 to 1.8 for the C-band wavelengths. The 𝜂(𝑦) = (𝐴𝑦 + 𝐵) 𝑜𝑟𝑑𝑒𝑟 is the filling factor of silicon of the SWG waveguide at a transverse position 𝑦. The schematic of potential well that describes e cut-off frequency, as introduced before, is presented in the inset of Fig. S2. In order to approximately investigate the frequency spacings of this three-dimension (3D) SWG waveguide, the Marcatili's method [START_REF] Cassan | Nonlinear Fiber Optics[END_REF] is adopted to find an equivalent simpler 2D waveguide with eight cladding regions, then the phase item of the dispersion modes Equ. (S14) can be rewritten as:

𝑁(𝐿 𝑚 ) = ∫ √(𝑘 0 2 𝑛 𝑆𝑊𝐺 2 (𝑦) -𝑘 𝑥 2 -𝑘 𝑧 2 ) 𝐿 𝑚 0 𝑑𝑦 = 𝑚𝜋 2 + 𝜋 4 (S20) 𝑘 𝑥 𝑡 = 𝑎𝑟𝑐𝑡𝑎𝑛 ( 𝛾 𝑥 𝑘 𝑥 ) (S21) = √(1 -𝐷)[𝜂(𝑛 𝑐𝑒𝑛𝑡 2 -𝑛 𝑐 2 ) + 𝑛 𝑐 2 ] -𝐶 (S23)
With this equivalent index, (S12) can be simplified to the general form:

𝑁(𝐿 𝑚 ) = ∫ √(𝑘 0 2 𝑛 2 (𝑦) -𝑘 𝑧 2 ) 𝐿 0 𝑑𝑦 = 𝑚𝜋 2 + 𝜋 4 (S24)
Now the phase item shares the same expression as (S14). Thus, we can adopt the method discussed before to optimize the waveguide. Very importantly, the effective index 𝑛 𝑒𝑓𝑓 is shifted to a lower level due to the limited thickness, which gives a maximum equivalent index of 𝑛(0)=√(1 -𝐷)[(𝑛 𝑐𝑒𝑛𝑡 2 -𝑛 𝑐 2 ) + 𝑛 𝑐 2 ] -𝐶.

In order to ease the effect coming from 𝑛 𝑥 and simultaneously promote the effective index values of all the modes, we introduce additionally a shared section in which the index is fixed as the central section shown in Fig. S2, with a width of 2𝑏. By setting this, a minimum phase can be ensured and the total phase can be rewritten as: The only thing that matters is the absolute value frequency spacing. This result unambiguously confirms us that, without the assistance of a variable "effective width" supported by the selfadaptive boundary, there is no way to reshuffle the frequency spacings in the multi-mode scheme, since the integral range has a significant effect on the left part of eigen dispersion equation. 

(1) K. Okamoto, "Fundamentals of Optical Waveguides," Elsevier 2006.
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 2 b) depicts the evolution of the frequency spacing ∆𝜔 𝑚 = 𝜔 𝑚+1 -𝜔 𝑚 and effective index as a function of the mode order. With the increasing mode order m (thus decreasing 𝑛 𝑒𝑓𝑓 ), the frequency spacing ∆𝜔 𝑚 monotonously and rapidly increases.
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 2 Fig. 2. (a) Dispersion curves of first 4 modes of a two-dimension silicon waveguide with silica
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 3 Fig. 3. (a) Sketch of a non-uniform index profile and the mode distribution of the first three
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 3 Figure 3(b) shows d𝜔/d𝑚 as a function of 𝑛 𝑒𝑓𝑓 , calculated from Equ. (3), considering
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 4 Fig. 4. (a) Sketches of a photonic well described by the cut-off frequency for photon propagating
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 2 ∆ω SI can be satisfied at the shifted position characterized by 2𝑘 𝑧𝑃 > (𝑘 𝑧𝑆 + 𝑘 𝑧𝐼 ), then the nonlinearity-induced phase mismatch can be compensated, as in Fig.5(a). This condition requires 𝑑(∆ω 21 -∆ω 10 ) 𝑑𝑘 𝑧 > 0, which can be easily satisfied by adjusting the structure-profile. For example, in the in Fig.5(b) we plot the 𝛿𝜔 for the optimized waveguide shown in Fig.4. rightward the working point, we see that ∆ω 21 > ∆ω 10 with increasing 𝑘 𝑧 (grey line). The negative-to-positive trend well validates the possibility of compensating the nonlinear mismatch. For silicon waveguide working at telecom wavelengths,
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 5 Fig. 5. (a) Schematic of the proposed SWG waveguide for the simultaneous energy conservation
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 6 Fig. 6. (a), (b), (c) and (d) are the dispersion curves of first 3 modes in SWG waveguide with
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 221 in which 𝑛 𝑤 and 𝑛 𝑐 is the material index of waveguide core and cladding while ℎ = √(𝑘 0 2 𝑛 𝑤 2 -𝑘 𝑧 2 ) and 𝛾 = √(𝑘 𝑧 2 -𝑘 0 2 𝑛 𝑐 2 ) are the wavevector along the 𝑦 axis, inside and outside the waveguide, respectively. Assuming that the 𝑘 𝑧 is a constant and 𝜔 is a function of 𝑛 𝑒𝑓𝑓 and 𝑚, the frequency spacing between modes can therefore be expressed as: Equ. (S1) we can infer that if 𝑑𝑚 𝑑𝑛 𝑒𝑓𝑓 ⁄ is proportional to -1 𝑛 𝑒𝑓𝑓 , then the frequency spacing is fixed. Though the mode order number 𝑚 is a discrete integer indicating the phase solution, mathematically it still can be represented as a function of 𝜔 and 𝑛 𝑒𝑓𝑓 , from Equ. describing the phase from standing waves, while 𝑓 𝑚2

2 . 2 .

 22 shown in Fig.S1, modes with different mode orders m are confined in different spatial spans, which sizes increase with m. Each spatial span 𝐿 𝑚 (for m=1,2,3, …) which can be called "effective length" for mode 'm' is defined through 𝑛(𝐿 𝑚 ) = 𝑛 𝑒𝑓𝑓𝑚 . The condition 𝒏 𝒆𝒇𝒇 > 𝒏 𝒃 is defined as "self-adaptive boundary (SAB)" in the manuscript. By solving the equation (S6)-(S12), the eigen equation can be written as: Eigen equation for modes propagating along 𝑧 axis with an electric field polarized along the 𝑦 axis can be rewritten as: the step-index waveguide, to respond to the approximately linear phase increas on the right part of Equ. (1), the changes of 𝜔 and 𝑛 𝑒𝑓𝑓 were correlated thorugh the relationship When the proposed self-adaptive boundary 𝑛 𝑒𝑓𝑓,𝑚 > 𝑛 𝑏 ∀𝑚 is introduced, the spatial integral range is automatically selected which exactly gives the room to trim the frequency spacing through the following condition : To consider the improvement from this new condition, a similar analysis for frequency spacings is carried out as previously with a general index profile described by 𝑛(𝑦) = (𝐴 + 𝐵𝑦) 𝑝 . First considering a linear index profile, i.e 𝑛(𝑦) = 𝐴𝑦 + 𝐵 the phase 𝑁(𝐿 𝑚 ) can be recalculated as: of the self-adaptive behavior that the endpoint 𝑛(𝐿 𝑚 ) is equal to 𝑛 𝑒𝑓𝑓𝑚 , then the (S15) integral can be greatly simplified in a common form for different modes, with 𝑛(0) = 𝐵 = 𝑛 𝑐𝑒𝑛𝑡 , to: 𝑁(𝐿 𝑚 ) = -𝑘 𝑧 𝑛 𝑒𝑓𝑓,𝑚 2𝐴 𝑙𝑜𝑔[𝑘 𝑧 ] -(
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 S2 Fig. S2. Schematic of a graded-profile subwavelength waveguide. The equivalent cut-off
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 221 𝑛(𝐿 𝑚 ) = 𝑛 𝑒𝑓𝑓,𝑚 , if order = 1, that is to say 𝜂(𝑦) = (𝐴𝑦 + 𝐵), then 𝑁(𝐿 𝑚 ) = 𝑏𝑘 𝑧 √ 1st derivative of 𝑁(𝐿) is modified as: 𝑛 𝑒𝑓𝑓,𝑚 𝑙𝑜𝑔 [

  𝑎)], which we found, is not much different in the index (𝑛 𝑒𝑓𝑓,𝑚 ) range we adresse (i.e. 𝑛 𝑏 >3). Based on Equ. (S34), frequency spacings in different configurations are investigated and presented in Fig.S3. Compared to a step-index waveguide with 𝑛 𝑏 =3 and 𝑎 =350nm, the frequency spacings of linear-shape graded-index waveguide presents a faster change but in a basically similar line-shape. Even though using a wider graded-index waveguide with 𝑎=500nm or smaller boundary index 𝑛 𝑏 =2.6, the lineshapes in the concerned range of effective index (𝑛 𝑒𝑓𝑓 < 𝑛 𝑏 , i.e.[1.6, 3] and [1.6, 2.6], respectively) still behave monotonously.

Fig. S4 .

 S4 Fig. S4. Analytical Frequency spacings as a function of effective index 𝑛 𝑒𝑓𝑓 , with different

  

  

  Confirmed by the numerical methods, for 𝑎=350nm, 𝑛 𝑤 =3.48, 𝑛 𝑐 =1.445 and 𝑛 𝑒𝑓𝑓 from 1.6 to 3,

	we have	𝑑𝑓 𝑚2 𝑑𝑛 𝑒𝑓𝑓	∈ (-1.7, -0.19) while	𝑑𝑓 𝑚1 𝑑𝑛 𝑒𝑓𝑓	∈ (-5, -3), from which we may assume that the
	𝑑𝑚 𝑑𝑛 𝑒𝑓𝑓	is almost governed by	𝑑𝑓 𝑚1 𝑑𝑛 𝑒𝑓𝑓	for simplifying the analysis. Therefore,	𝑑𝑚 𝑑𝑛 𝑒𝑓𝑓	can be
	approximately expressed as:				
	𝑑𝜔 𝑑𝑚	=	𝑘 𝑧 𝑐 -𝑛 𝑒𝑓𝑓 2	/(	𝑑𝑓 𝑚1 𝑑𝑛 𝑒𝑓𝑓	+	𝑑𝑓 𝑚2 𝑑𝑛 𝑒𝑓𝑓	) ≈	𝑘 𝑧 𝑐 -𝑛 𝑒𝑓𝑓 2	/(	𝑑𝑓 𝑚1 𝑑𝑛 𝑒𝑓𝑓	) =	𝑐𝜋√𝑛 𝑤 2 -𝑛 𝑒𝑓𝑓 2 2𝑎𝑛 𝑤 2	(S5)

  Comparing Equ. (S34) to Equ. (S5), the only change we can clearly see is the replacing from

											√𝑛 𝑐𝑒𝑛𝑡 2 -𝑛 𝑒𝑓𝑓,𝑚 2 √𝑛 𝑏 2 -𝑛 𝑒𝑓𝑓,𝑚 2	+𝑛 𝑐𝑒𝑛𝑡 +𝑛 𝑏	])
	(S32)						
	Similarly,					
	𝑑𝜔 𝑑𝑚	=	k z 𝑐 -𝑛 𝑒𝑓𝑓,𝑚 2	/	𝑑 𝑑𝑛 𝑒𝑓𝑓,𝑚	[	2 𝜋	𝑁(𝑎) + 𝑓 𝑚2 ]	(S33)
	=	𝜋k z 𝑐 -2𝑛 𝑒𝑓𝑓,𝑚 2	/ { 𝛽k z 2𝐴	[	𝑛 𝑐𝑒𝑛𝑡 √𝑛 𝑐𝑒𝑛𝑡 2 𝑛 𝑒𝑓𝑓,𝑚 -𝑛 𝑒𝑓𝑓,𝑚 2 2	-	𝑛 𝑏 √𝑛 𝑏 2 -𝑛 𝑒𝑓𝑓,𝑚 2 𝑛 𝑒𝑓𝑓,𝑚 2	+ 𝑙𝑜𝑔 ( √𝑛 𝑐𝑒𝑛𝑡 2 √𝑛 𝑏 2 -𝑛 𝑒𝑓𝑓,𝑚 -𝑛 𝑒𝑓𝑓,𝑚 2 2	+𝑛 𝑐𝑒𝑛𝑡 +𝑛 𝑏	)] +
	-𝑛 𝑒𝑓𝑓,𝑚 -1+𝑛 𝑒𝑓𝑓,𝑚 2 (1/𝑛 𝑐 2 +1/𝑛 𝑏 2 )	•	1 √(𝑛 𝑒𝑓𝑓,𝑚 2	-𝑛 𝑐 2 )	•	1 2 -𝑛 𝑒𝑓𝑓,𝑚 √(𝑛 𝑏 2	) }	(S34)
	𝑑 𝑑𝑛 𝑒𝑓𝑓	𝑓 𝑚1 to 𝑑 𝑑𝑛 𝑒𝑓𝑓		
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Supplementary materials

S1. CALCULATING THE 𝒅𝝎/𝒅𝒎 OF A STEP-INDEX TWO-DIMENSION

WAVEGUIDE

into five zones (zones 0, ∓1, ∓2 in the Fig. S1). The central part (part 0) is within the [-𝐿 𝑚 , 𝐿 𝑚 ] range in which 𝑛(𝑦) is larger than 𝑛 𝑒𝑓𝑓 and can be expressed by a 𝑐𝑜𝑠 function as usually, instead of the physical boundaries (i. e. 𝑦 = ∓𝑎). The other four zones (zones ∓1, ∓2) are described by a decaying form because 𝑛(𝑦) is there smaller than 𝑛 𝑒𝑓𝑓 . To satisfy the Maxwell's equations and the corresponding boundary condition for an electric field polarizing along 𝑦, the field can be expanded as follows we rewrite the wave equation inside the waveguide [START_REF] Cassan | Nonlinear Fiber Optics[END_REF]: Based on this approximation, this case can be simplified as a two-dimension waveguide with an equivalent "material index" of:

We then obtain similarly the frequency spacings as:

Currently, the frequency spacing 𝑑𝜔 𝑑𝑚 is no longer simply dominated by the effective index 𝑛 𝑒𝑓𝑓,𝑚 .

Instead, also being affected by the new introduced item with the boundary-induced phase item 𝑎𝑟𝑐𝑡𝑎𝑛(

), as: If 𝑛(y) = 𝐴𝑦 + 𝐵, that is to say, for a linear-index profile waveguide, then