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Abstract

Linear fixed effect models are a general way to fit panel or longitudinal data with a distinct
intercept for each unit. Based on expectile and M-quantile approaches, we propose alterna-
tive regression estimation methods to estimate the parameters of linear fixed effect models.
The estimation functions are penalized by the least absolute shrinkage and selection oper-
ator (LASSO) to reduce the dimensionality of the data. Some asymptotic properties of the
estimators are established, and finite sample size investigations are conducted to verify the em-
pirical performances of the estimation methods. The computational implementations of the
procedures are discussed, and real economic panel data from the Organisation for Economic
Cooperation and Development (OECD) are analyzed to show the usefulness of the methods
in a practical problem.

Keywords: Quantile regression, Expectile, M-estimation, repeated measures, LASSO.

1 Introduction

Panel data, longitudinal data, and repeated measures are widespread in applied sciences such as
econometrics, medicine, and engineering. They need be analyzed with models considering the dual
source of variability between and within observational units. There are two main approaches to
handling this type of data; in the random effects viewpoint, explanatory variables and individual
effects are independent, and in the fixed effects standpoint, this assumption is relaxed. The linear
mixed model (LMM) might combine these two approaches, but the explanatory variables are usually
treated as fixed effects, and individual intercepts are assumed as random effects (Laird and Ware,
1982). Random coefficients and fixed intercepts are allowed, but they are exceptions in applied
research. The fixed effects specification is more robust than the random effects model. However,
analyzing fixed effects panel data is more difficult due to the increasing number of parameters with
the sample size (Horowitz and Lee, 2004; You and Zhou, 2014).

The least absolute deviation regression (LADR) estimates the median effect of regressors on
the dependent variable rather than the mean effect as in the least square regression. The quantile
regression (QR), which generalizes LADR to any percentile of interest, is a favorable alternative
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for at least three reasons. This method returns a general relationship between predictors and the
response variable (it is not restricted to median and mean effects), it does not require Gaussian
errors, and it is less sensitive to heteroscedastic data (Koenker and Bassett Jr., 1978) and (Koenker,
2005, page 41).

The combination of QR and LMM seems to be a natural and necessary strategy since many
longitudinal data are heteroscedastic and non-Gaussian. Therefore, quantile regression with fixed ef-
fects (QRFE) and penalized quantile regression with fixed effects (PQRFE) are appropriate methods
for panel data (Koenker, 2004). A detailed overview is available in Marino and Farcomeni (2015),
but this field has made expressive progress in recent years (Galarza et al., 2020; Li et al., 2020;
Galvão et al., 2020; Tian et al., 2021). It is also possible to combine QR with random effects, but
this is outside this paper’s scope.

The estimation of quantiles involves the check function, which is synthetic, robust, and easy to
interpret (Koenker and Bassett Jr., 1978). However, the check function shows numerical instability
close to zero where it is non-derivable (Alfò et al., 2021), producing a non-monotonic behavior
named “the quantile crossing problem”, which violates the basic definition of percentiles (Koenker,
2005, page 55). The quantile crossing might be worse when there is a curse of dimensionality, which
arises if the number of covariates is very large (Breckling et al., 2001). Finally, extreme quantile
estimates display a progressive bias (Waltrup et al., 2015). There are some methods to correct these
problems, as expectile regression (ER) which is a weighted least squared (Newey and Powell, 1987),
and M-quantile regression (MQR) which generalizes the M-estimation proposed by Huber (1964)
to quantile context (Breckling and Chambers, 1988). These two alternative approaches produce
quantiles of a distribution related to the true distribution, as shown by Jones (1994). ER used
to be more efficient and more stable (the regression curves hardly cross each other), but is more
biased than QR (Schnabel and Eilers, 2009). MQR balances the trade-off between QR robustness
and ER efficiency, see Kim and Oh (2020). This balance is tuned by a constant c as in the classical
M-estimation method proposed by Huber (1964), and the choice of c in MQR is discussed by Kokic
et al. (2002); Kim and Oh (2020). MQR is also more resilient to curse of dimensionality (Kokic
et al., 2002).

To the best of our knowledge, the papers that combine expectile regression with random effects
(ERRE) are Waltrup and Kauermann (2017), and Li et al. (2022). Tzavidis et al. (2016); Alfò et al.
(2021) propose M-quantile regression with random effects (MQRRE). Geraci and Bottai (2007,
2014) introduce quantile regression with random effects (QRRE). However, these works assume
that the random intercepts have no location contribution, are uncorrelated with the explanatory
predictors, and follow a Gaussian distribution. The original proposition of QRFE is free of all
these restrictions (Koenker, 2004). QRFE treats individual intercepts as fixed effects that may
be different from zero. An expectile approach for fixed effects is proposed by Barry et al. (2023),
i.e., expectile regression with fixed effects (ERFE). The negative counterpart of QRFE and ERFE
is that the number of parameters to be estimated increases with the number of subjects. Hence,
PQRFE uses LASSO to shrink the dimension of the parameter space (Koenker, 2004). The optimal
value of LASSO’s tuning parameter for this model is discussed by Lamarche (2010); Lamarche and
Parker (2021).

Based on the above literature review, we propose here three variants of QRFE by introducing
alternative loss functions and penalizing the intercepts with Lasso. All proposed methods use either
the expectile or the M-quantile as the loss function. The methods are penalized expectile regres-
sion with fixed effects (PERFE), M-quantile regression with fixed effects (MQRFE) and penalized
M-quantile regression with fixed effects (PMQRFE). In Section 3, we show that the empirical
performance depends on the loss function, which is expected. For example, ERFE and PERFE
present, in general, better performance in the extreme quantiles than the standard ER, QR and
MQR methods. About robustness, PMQRFE outperforms the other techniques and thus appears
as an alternative approach to estimating LMM with fixed effects.
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The remainder of this paper is as follows. In Section 2, the model and the estimation methods
are introduced. In Section 3, the Monte Carlo simulation results are presented, and the empirical
performance of each method is analyzed. Section 4 is committed to real data application of interest
in the recent economics literature. Section 5 summarizes our conclusions.

2 Model and estimation methods

2.1 The model

In panel data analysis, mixed models may involve either random or fixed effects. In the first case,
the intercepts are represented by zero-mean random variables and are assumed to be independent
of the error term. Therefore, random effects models may omit the location effect of intercepts and
only include them in the variance structure, which needs to be chosen appropriately (Diggle, 1988).
Fixed effects models represent the individual effects by parameters to be estimated. However, the
number of parameters increases with the number of units, and their estimation becomes inefficient
(Horowitz and Lee, 2004; You and Zhou, 2014).

We denote by Yi = (Yi1, . . . , Yimi
)T the vector of measurements taken at times ti1, . . . , timi

of the
ith subject for i = 1, . . . , n. Following Laird and Ware (1982); Diggle (1988), the LMM assumes
that each measurement Yij of Yi, j = 1, . . . ,mi, follows

Yij = Xijβ + αi + Uij, i = 1, . . . , n j = 1, . . . ,mi, (1)

where Xij is a known (1 × d) design vector, β = (β1, . . . , βd)
T is a vector of d unknown but fixed

parameters to be estimated, αi is the individual intercept, and Uij is a random variable. Model (1)
can be written in a vector form as

Y = Xβ +Zα+U ,

where Y = (Y T
1 , . . . ,Y

T
n )T is a vector of length N =

∑n
i=1mi. Xi = [XT

i1, . . . ,X
T
imi

]T is a (mi × d)
matrix and X = [XT

1 , . . . ,X
T
n ]

T is a (N × d) matrix. Z = [Z1, . . . ,Zn] is a (N × n) incident
matrix which kth element of column Zi equals one if mi−1 + 1 ≤ k ≤ mi and zero otherwise, with
m0 = 0. When mi = m for all i, Z = In ⊗ 1m, where ⊗ denotes the Kronecker product, In is
the (n × n) identity matrix and 1m is the m-vector of ones. α = (α1, . . . , αn)

T is the n-vector of
individual intercepts. U = (UT

1 , . . . ,U
T
n )

T is the N -vector of errors, where UT
i = (Ui1, . . . , Uimi

)
and the random vectors U1, . . . ,Un are independent.

In this paper, we use a QR model with fixed effects to quantify the influence of Xij on the
response Yij. This model is written as

QYij
(τ |Xij) = Xijβ(τ) + αi(τ), (2)

where QYij
(τ |Xij) is the conditional τ -quantile of Yij given Xij with τ ∈ (0, 1). In (2), β(τ)

denotes the vector of common parameters, and αi(τ) is a quantile-specific individual effect, see
Koenker (2005, Chapter 8) and Galvão et al. (2020).

2.2 Estimation methods: quantile, expectile and M-quantile approaches

Let α(τ) = (α1(τ), . . . , αn(τ))
T . In Model (2), the estimate (α̃(τ), β̃(τ)) of (α(τ),β(τ)) is a solution

of

min
α∈Rn,β∈Rd

n∑
i=1

mi∑
j=1

ρτ (Yij −Xijβ − αi), (3)

where, for all u ∈ R, ρτ (u) = ψτ (u) g(u) with ψτ (u) = |τ − 1u≤0| and g(·) a convex loss function.
Here, we discuss three possible choices for g(·).
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i) The most common choice is the absolute loss function g1(u) = |u|; then ρτ (·) is the check
function.

ii) An alternative for g(·) is the squared loss function g2(u) = u2; then ρτ (·) is the asymmetric
least squared function,

iii) The Huber loss function g3(u) = (c|u| − 1
2
c2)1|u|>c +

1
2
u21|u|≤c, where c ∈ (0,∞) is another

alternative for g(·); then ρτ (·) is the M-quantile function.

Note that g3(·) is a mixture of g1(·) and g2(·) which is more robust than g2(·) and more efficient
than g1(·) (Kim and Oh, 2020). When g(·) = g1(·), g2(·), g3(·) in (3), (α̃(τ), β̃(τ)) is the QRFE,
ERFE and MQRFE estimate, respectively.

Remark 1. When mi = 1 and αi = 0 for all i, QRFE becomes QR and is introduced by Koenker
and Bassett Jr. (1978), ERFE is ER and is proposed by Newey and Powell (1987), and MQRFE is
MQR and appears in (Breckling and Chambers, 1988).

As discussed previously, the weakness of fixed effects models is the large number of parameters
to be estimated and the accumulation of estimation errors (You and Zhou, 2014). To overcome this
drawback, Koenker (2004) uses the ideas of Tibshirani (1996) to penalize the intercepts by LASSO.
Thus, the quantile estimate (α̂(τ), β̂(τ)) of (α(τ),β(τ)) solve the penalized version of (3),

min
α∈Rn,β∈Rd

{
n∑

i=1

mi∑
j=1

ρτ (Yij −Xijβ − αi) + λ
n∑

i=1

|αi|

}
, (4)

where λ is a tuning parameter. Let us consider

ε(τ) = Y −Xβ(τ)−Zα(τ), (5)

which is estimated by ε̃(τ) = Y −Xβ̃(τ)−Zα̃(τ), where (α̃(τ), β̃(τ)) is a solution of (3). Following
Koenker (2004) and Lamarche (2010), we take in (4) λ = λ̃ = σ̂(ε̃(0.5))/σ̂(α̃(0.5)), where σ̂(u)
is the sample standard deviation of any vector u ∈ RN . These authors propose to use g1(·) in ρτ
to solve (4), and here we extend this methodology by suggesting the two alternative loss functions
g2(·) and g3(·), which conduce to PERFE and PMQRFE methods, respectively.

2.3 Asymptotic results

The convergence properties of QRFE and PQRFE estimators are established by Koenker (2004).
Asymptotic normality of ERFE estimator is addressed by Barry et al. (2023). Here, we discuss the
convergence of PERFE method.

Without loss of generality, we consider the case of balanced design experiment where mi = m
for i = 1, . . . , n. The following assumptions are introduced.

(A1) The random vectors Y1, . . . ,Yn are independent, and

V[Ψτ (εi(τ))εi(τ)] = E[Ψτ (εi(τ))εi(τ)εi(τ)
TΨτ (εi(τ))] = Σi(τ),

where εi(τ) = Yi −Xiβ(τ)−Ziα(τ) and Ψτ (εi(τ)) = diag(ψτ (εi,1(τ)), . . . , ψτ (εi,m(τ))).

(A2) The limiting forms of the following matrices are positive definite,

D0(τ) = lim
m→∞
n→∞

1

m

[
ZTΣτZ ZTΣτX/

√
n

XTΣτZ/
√
n XTΣτX/n

]
,

D1(τ) = lim
m→∞
n→∞

1

m

[
ZT E[Ψτ (ε(τ))]Z ZT E[Ψτ (ε(τ))]X/

√
n

XT E[Ψτ (ε(τ))]Z/
√
n XT E[Ψτ (ε(τ))]X/n

]
,
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whereΨτ (ε(τ)) = diag(ψτ (ε1,1(τ)), . . . , ψτ (ε1,m(τ)), . . . , ψτ (εn,1(τ)), . . . , ψτ (εn,m(τ))) andΣτ =
V[Ψτ (ε(τ))ε(τ)] = diag(Σ1(τ), . . . ,Σn(τ)).

(A3) max
i≥1, j≥1

∥Xij∥ < M , where ∥Xij∥2 = XijX
T
ij .

(A4) limm→∞ λm/
√
m = λ0 ≥ 0.

Assumptions (A1)–(A3) are standard in longitudinal data analysis (Koenker, 2004; Barry et al.,
2023). (A1) assumes independence between the subjects but allows dependency for each subject.
When τ = 1/2, ψτ (u) = 1/2 and D1(τ) simplifies. (A4) appears in Knight and Fu (2000) to prove
asymptotic normality of Lasso-type estimators.

Theorem 1. Under assumptions (A1)–(A4) and ρτ (u) = ψτ (u)u
2 in (4),

√
nm(β̂(τ) − β(τ)) has

the same limiting distribution as the component δ1 of the minimiser of

V0(δ) = δTD1(τ)δ − 2δTB + λ0

n∑
i=1

[δ0,i sgn(αi(τ))1αi(τ )̸=0 + |δ0,i|1αi(τ)=0],

where δ = (δT
0 , δ

T
1 )

T , δ0 ∈ Rn, δ1 ∈ Rd, and B has a N(0,D0(τ)) distribution.

Proof. We write ρτ (Yij −Xijβ − αi) as ρτ (Yij − µij(τ)−Xijδ1/
√
nm− δ0,i/

√
m), where µij(τ) =

QYij
(τ |Xij) = Xijβ(τ) + αi(τ), δ1 =

√
nm(β − β(τ)) and δ0,i =

√
m(αi − αi(τ)). For a given

λ = λm, solving (4) is equivalent to minimize with respect to δ = (δT
0 , δ

T
1 )

T , δ0 ∈ Rn, δ1 ∈ Rd, the

objective function Rnm(δ) = R
(1)
nm(δ) +R

(2)
nm(δ0), where

R(1)
nm(δ) =

n∑
i=1

m∑
j=1

ρτ (Yij − µij(τ)−Xijδ1/
√
nm− δ0,i/

√
m)− ρτ (Yij − µij(τ)),

R(2)
nm(δ0) = λm

n∑
i=1

|αi(τ) + δ0,i/
√
m| − |αi(τ)|.

(6)

The estimate

δ̂(τ) =

(
δ̂0(τ)

δ̂1(τ)

)
=

(√
m(α̂(τ)−α(τ))√
nm(β̂(τ)− β(τ))

)
minimises Rnm(δ). Following Barry et al. (2023), under A(1)–A(3), the limiting form of R

(1)
nm(δ)

is δTD1(τ)δ − 2δTB. Now, under (A4), R
(2)
nm(δ0) → λ0

∑n
i=1[δ0,i sgn(αi(τ))1αi(τ )̸=0 + |δ0,i|1αi(τ)=0].

Then, the limiting form of Rnm(δ) is V0(δ) and the result follows from the convexity of Rnm(δ).

Remark 2. The asymptotic distributions of MQRFE and PMQRFE estimators are not discussed
in this paper. It is expected that both estimators converge in distribution at the rate

√
nm to a

Gaussian random vector. The asymptotic covariance matrix shall depend on parameter c in g3(·)
and be a balance of the results obtained for g1(·) and g2(·). A simple empirical study corroborates
this insight as shown in Figure 1 as well as the empirical results discussed in Section 3. In Figure 1,
the data are generated using Model (7) where Uij follows a N(0, 1) distribution. We plot the

densities of
√
N(β̂(τ)−β(τ)) for τ = 0.1, 0.5, 0.9 for the three estimators PQRFE, PMQRFE, and

PERFE. We observe that the PERFE (blue) estimator behaves similarly in the three scenarios.
As we can see, the empirical distribution of PMQRFE is between the distributions of PQRFE and
PERFE. A similar performance was observed for the empirical distribution of MQRFE.
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(a) τ = 0.1
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(b) τ = 0.5
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(c) τ = 0.9

Figure 1: Densities of PQRFE (red), PMQRFE (green) and PERFE (blue) estimators for Model (7)
(β(τ) = 0).

3 Monte Carlo study

3.1 Monte Carlo design and measures of accuracy

In this section, a simulation study with a finite sample size is conducted to verify the performance of
the estimators QRFE, PQRFE, MQRFE, PMQRFE, ERFE and PERFE under different scenarios,
such as longitudinal data with homoscedasticity, heteroscedasticity and errors that follow Normal,
heavy-tail and skew-symmetric distributions. These scenarios are quite common in many real
problems.

The first model considered in this study is a simple case where the subjects αi and covariates
Xij have only a location shift effect. This model is defined by

Yij = αi +Xijβ + Uij, (7)

and is denoted as location-shift model (LSM). The second model presents a location and scale
effect. It is denoted by location-scale-shift model (LSSM) and is defined by

Yij = αi +Xijβ + (1 +Xijγ)Uij, (8)

where Xij = Wi+Vij, Wi and Vij are independent and follow a N(0, 1) distribution. In (7) and (8),
we consider the three following distributions:

i) Normal case: αi, Uij ∼ N(0, 1),

ii) Student’s t case: αi, Uij ∼ t3,

iii) Chi-squared case: αi, Uij ∼ χ2
3.

In all cases, we assume that β = 0 and γ = 0.1. For Model (7), we have β(τ) = 0, and for Model (8),
we have

β(τ) =

{
γQUij

(τ) if 1 +Xijγ > 0,

γQUij
(1− τ) if 1 +Xijγ < 0,

where QUij
(τ) is the τ -quantile of Uij. These experimental designs are originally proposed by

Koenker (2004). The sample size follows a balanced design with n = 50, m = 5. Lamarche (2010)
shows that the estimates of β(τ) are improved when n and m increase (less bias and variance), while
λ̃ is more directly affected by m. Nine values of τ are considered, τ = 0.1, 0.2, . . . , 0.9, extreme
quantiles are progressively more challenging to estimate as far as they are from 0.5 (Wang et al.,
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2012). The asymptotic extremes of MQR have already been investigated by Kokic et al. (2002);
Kim and Oh (2020). In this context, we choose c = 1 since this value is also considered by these
authors.

The parameter estimates, bias, root mean squared error (RMSE) and coverage probability (CP)
with 100(1− δ)% of the confidence interval are based on S = 2, 000 replications and are given by

i) Bias(β̂(τ)) = 1
S

∑S
s=1(β̂s(τ)− β(τ)),

ii) RMSE(β̂(τ)) =
(

1
S

∑S
s=1(β̂s(τ)− β(τ))2

)1/2

,

iii) CP(β̂(τ), δ) = 1
S

∑S
s=1(1β(τ)∈[β̂s(τ)±ŜE(β̂s(τ))Φ−1(1−δ/2)]),

where β̂s(τ) is the sth estimation of β(τ), Φ−1 is the inverse of the standard normal cumulative

distribution, ŜE(β̂s(τ)) = (Σ̂n+1/N)1/2 is the estimated standard error.

3.2 Empirical results

First, consider the estimation of λ. The optimal value suggested by Lamarche (2010) is the rate
between the standard deviations of the vectorU and α, σ(U)/σ(α), see also, Section 3.3. Under the
assumption that the distributions of U and α are the same for each case, λ = 1 is the optimal value.
In this simulation, we consider the estimators QRFE, ERFE and MQRFE to estimate λ, and we
fix τ = 0.5. Normal, Student’s t and Chi-squared distributions are consider for Uij, m = 5, n = 50
and the plots in Figure 2 refer to the estimates over 2000 replications. This figure shows that all
estimators tend to underestimate λ.
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(a) LSM with N(0, 1)
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(b) LSM with t3
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(c) LSM with χ2
3
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(d) LSSM with N(0, 1)
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3

Figure 2: Density of λ estimated by QRFE (red), MQRFE (green) and ERFE (blue). Upper and
lower rows display the estimates for Models (7) and (8), respectively.
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Now, we compare the performance of the estimation methods for β(τ), τ = 0.1, 0.2, · · · , 0.9.
Figures 3 and 4 display the Bias, RMSE and empirical CP, for Models (7) and (8), respectively,
with Normal, Student’s t and Chi-squared distributions. Comparing Figures 3a, 3d, 3g with 4a, 4d,
4g, respectively, we see that the main difference between the two simulation models is related to
the bias, which increases substantially in the case of Models (8).

Concerning RMSE and empirical CP, the performance of the methods changes according to the
distributions. The ERFE and PERFE methods display, in general the best performance in terms
of RMSE and CP, except in the case of a t3 distribution where MQRFE (PMQRFE) methods
present the best performance in terms of RMSE followed by QRFE (PQRFE) approaches, for
both models. We observe that CP performance of the PQRFE is very unstable. This estimator
substantially underestimates the true probability level for extreme values of τ . The estimators
without penalization (dashed lines in the plots) reveal that the estimation of CP has the highest
bias.

3.3 Computational considerations

All the computational techniques discussed in this paper are available in an R package (Danilevicz
et al., 2022). We use RcppArmadillo to accelerate the calculations (Eddelbuettel and Sanderson,
2014). We have two objectives: obtaining a fair value of λ for the penalized methods and calculating
the value of the covariance matrices of the β(τ) estimators for all procedures. To answer the first
question, we use Lamarche (2010)’s statement that σ(U)/σ(α) → λ at least for τ = 0.5. Both
α and U are unknown, but we can achieve α̃(0.5) and ε̃(0.5) by QRFE, ERFE and MQRFE,
where ε̃(τ) = (ε̃1(τ), . . . , ε̃n(τ))

T , ε̃i(τ) = (ε̃i1(τ), . . . , ε̃imi
(τ))T is the empirical residual equivalent

to the τ -error from assumption (A1). Consequently, σ̂(ε̃(0.5))/σ̂(α̃(0.5)) is a fair approximation of
λ. Though, fixing λ as known, we can estimate (α(τ),β(τ)) for PQRFE, PERFE and PMQRFE.
This procedure dispenses much less computational effort than others like cross-validation (CV) or
Bayesian information criterion (BIC), which require to reproduce the same calculations for a grid
of possible values of λ. In Algorithm 1, we write a pseudo-code to explain how to achieve a PQRFE
estimate, but it is analogous for PERFE and PMQRFE.

Data: Y ,X
Result: Obtain β̂(τ) and α̂(τ) by PQRFE.
while QRFE for τ = 0.5 do

take initial values β(τ)0 = 0 and α(τ)0 = 0
minimize (3)
obtain λ̃ = σ̂(ε̃(τ))/σ̂(α̃(τ))
return β̃(0.5), α̃(0.5) and λ̃

end
while PQRFE do

take initial values β(τ)0 = β̃(0.5) and α(τ)0 = α̃(0.5)
minimize (4) under restriction λ = λ̃
return β̂(τ) and α̂(τ)

end
Algorithm 1: Example of optimizing by PQRFE.

4 Real data application

The country’s ability to develop and maintain its social welfare and economic wealth depends on
multiple factors. Having a consolidated high-tech sector and being able to export its technology with

8



0.2 0.4 0.6 0.8

−
0
.0

0
4

0
.0

0
0

0
.0

0
2

0
.0

0
4

 

τ

B
ia

s

(a) Bias of LSM with N(0, 1)

0.2 0.4 0.6 0.8

0
.0

9
0
.1

0
0
.1

1
0
.1

2
0
.1

3
0
.1

4
0
.1

5

 

τ

R
M

S
E

(b) RMSE of LSM with N(0, 1)

0.2 0.4 0.6 0.8

0
.7

0
.8

0
.9

1
.0

 

τ

C
P

(c) CP of LSM with N(0, 1)

0.2 0.4 0.6 0.8

−
0
.0

0
4

−
0
.0

0
2

0
.0

0
0

0
.0

0
2

0
.0

0
4

 

τ

B
ia

s

(d) Bias of LSM with t3

0.2 0.4 0.6 0.8

0
.1

2
0
.1

4
0
.1

6
0
.1

8
0
.2

0

 

τ

R
M

S
E

(e) RMSE of LSM with t3

0.2 0.4 0.6 0.8

0
.7

0
0
.7

5
0
.8

0
0
.8

5
0
.9

0
0
.9

5
1
.0

0

 

τ

C
P

(f) CP of LSM with t3

0.2 0.4 0.6 0.8

−
0
.0

2
0
.0

0
0
.0

2
0
.0

4
0
.0

6

 

τ

B
ia

s

(g) Bias of LSM with χ2
3

0.2 0.4 0.6 0.8

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

 

τ

R
M

S
E

(h) RMSE of LSM with χ2
3

0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

 

τ

C
P

(i) CP of LSM with χ2
3

Figure 3: Bias, RMSE and CP with 95% of confidence of β̃(τ) estimate by QRFE (dashed line
with red square), MQRFE (dashed line with green circle), ERFE (dashed line with blue triangle)
and β̂(τ) estimate by PQRFE (solid line with red square), PMQRFE (solid line with green circle),
PERFE (solid line with blue triangle). Results for Model 7.
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Figure 4: Bias, RMSE and CP with 95% of confidence of β̃(τ) estimate by QRFE (dashed line
with red square), MQRFE (dashed line with green circle), ERFE (dashed line with blue triangle)
and β̂(τ) estimate by PQRFE (solid line with red square), PMQRFE (solid line with green circle),
PERFE (solid line with blue triangle). Results for Model 8.
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Figure 5: Exploratory data analysis

high-added value is one of these factors (Turen and Gökmen, 2013). Increasing high-tech exports
has a direct and significant implication on increasing the GDP (Yoo, 2008; Falk, 2009). However,
achieving and maintaining high levels of innovation and competitiveness may only be achieved with
public policies that guide and support an innovation-friendly strategy (Baesu et al., 2015). One way
of measuring a country’s commitment to its high technological sector is through its investments in
the base of this production chain, such as research and technology (Alemu, 2012).

The data is available in the World Bank1. The response variable is high-technology exports (% of
manufactured exports) (HTE) and the predicted variable is research and development expenditure
(% of GDP) (R&D) (Alemu, 2012; Turen and Gökmen, 2013; Baesu et al., 2015). The data is yearly
recorded of 38 OECD countries from 2007 to 2019. The data has 26 missing observations and the
model designed is unbalanced with mi = 4, 6, 10, 11, 12, corresponding to a sample of size N = 430.

First, we perform a brief exploratory data analysis. Figure 5a displays a scattering pattern
opening in a cone, a typical heteroscedastic phenomenon in this data type. Thus, quantile methods
are more suitable than standard average procedures since the former can better capture the behavior
that changes from one stratum to another. Figure 5b shows the trajectory of each country, there
is a large dispersion between them. Clearly, each state has a stable location which may be shared
with other countries in some cases (mainly in the case of the states with the lowest values of HTE).
This suggests a longitudinal model with different αi’s. Figure 5c shows that the response variable is
asymmetric, and this property of the data discourages the use of methods such as QRFE, PQRFE,
MQRFE and PMQRFE since, based on the simulation study, these approaches appear to be very
sensitive to the skewness property of the empirical distribution. Additionally, the non-parametric
statistical one-sample normality Kolmogorov-Smirnov and Breusch-Pagan tests are also performed.
As expected, these tests strongly indicated that the data is not normal and non homoscedastic,
respectively.

Based on the above discussion, we fit the following model to this data,

Yij = αi + β R&Dij +Uij, (9)

where, for i = 1, . . . , 38 and j = 1, . . . , 12, Yij is the HTE output of ith country at jth year, R&Dij

is the yearly national investment on research, αi is the country effect and Uij is the measurement
error of the model. Model (9) is fitted by PQRFE, PMQRFE and PERFE methods, since according
to Section 3, the empirical CP performance of these methods is better than the other approaches.

Figure 6 shows the central fit of the estimates of β(τ) and their empirical confidence intervals.
This figure displays an upward behavior of β̂(τ) as τ increases. The estimates β̂(τ) obtained with

1Collected on May 26, 2022
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PMQRFE and PERFE methods are significantly different from zero for all values of τ , while the
estimate of β(τ) using PQRFE method is non-zero only if τ > 0.5.
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Figure 6: R&D coefficient β̂(τ) and its confidence interval for τ ∈ [0.1, 0.9]

Figure 7 shows the β̂(τ) R&Dij lines for τ = 0.1, 0.9 with their confidence intervals. These lines
display a cone shape, which is not surprising since the standard deviation of the predicted variable
appears to be non-constant. This corroborates the use of quantile methods to fit the data. The
PMQRFE and PERFE approaches led to estimated models, which appear to be more accurate than
the PQRFE method. For all values of τ , R&D investments positively impact HTE. We conclude
that R&D constitutes an investment that influences the composition of a mature economy centred
on innovation, whose export of high-tech products does not exclusively depend on commodities.
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Figure 7: β̂(τ) R&Dij lines and confidence intervals for τ = 0.1, 0.9

5 Conclusion

This paper suggests alternatives to the check function in the quantile regression to estimate the
parameters of fixed effect models. The new approaches are named PERFE, MQRFE, and PMQRFE.
The finite sample investigation indicates that the most accurate estimation method is PERFE when
the errors have a Gaussian distribution. In contrast, PMQRFE is recommended for a symmetric
heavy-tailed distribution, and PERFE is preferable when the distribution is skewed. Financial panel
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data are analyzed where HTE and R&D are the response and predicted variables, respectively. The
distribution is skewed, and the PERFE method shows that R&D has a positive influence on HTE,
which is in line with the economics literature.
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