

PLASTIC POLLUTION & ECONOMIC GROWTH: INFLUENCE OF CORRUPTION AND LACK OF EDUCATION

Mateo Cordier, Takuro Uehara, Juan Baztan, Bethany Jorgensen, Yan Huijie

▶ To cite this version:

Mateo Cordier, Takuro Uehara, Juan Baztan, Bethany Jorgensen, Yan Huijie. PLASTIC POLLU-TION & ECONOMIC GROWTH: INFLUENCE OF CORRUPTION AND LACK OF EDUCATION. MICRO 2020 - Fate and impacts of microplastics: knowledge and responsibilities, Cabildo de Lanzarote; Spanish Biosphere Reserves Network; CEARC-OVSQ; UNESCO; University of Plymouth; etc., Nov 2020, Arrecife (Lanzarote), Spain. hal-04566765

HAL Id: hal-04566765 https://universite-paris-saclay.hal.science/hal-04566765v1

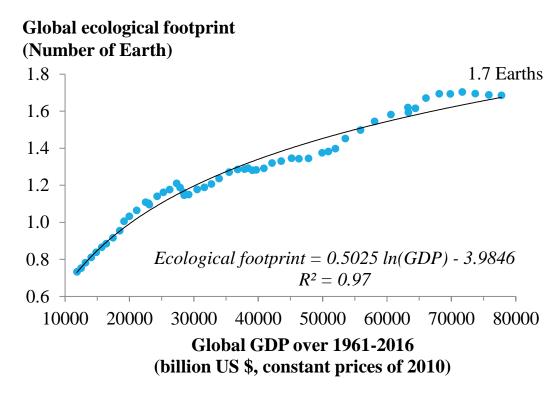
Submitted on 2 May 2024 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PLASTIC POLLUTION & ECONOMIC GROWTH: INFLUENCE OF CORRUPTION AND LACK OF EDUCATION

Mateo Cordier Takuro Uehara Juan Baztan Bethany Jorgensen Huijie Yan



CONTEXT

- Green economic growth led by technological solutions is often mentioned as a solution for mitigating plastic pollution.
- However, economic growth (global GDP, Gross Domestic Product) appears to be in contradiction to planetary boundaries (Global ecological footprint).

Sources of data for the graph:

To maintain our current appetite for natural resources, we would need the equivalent of 1.7 Earths

0.0000 0.9724 0.9719 .04519

Interval] .5256332 -3.74312

]	Linear regress	sion: Ecological	footpr	rint =	f (LN (GD	P))		
	Source	ss	df		MS		Number of ob	
	Model Residual	3.88352381 .110282952			352381 042277		F(1, 54) Prob > F R-squared Adj R-squared	
	Total	3.99380676	55	.072	614668		ROOT MSE	
Ecolo	gical footprint	Coef.	std.	Err.	t	P> t	[95% Conf.	
	LN (GDP) _cons	.5025289 -3.984623	.0115 .1204		43.61 -33.08	0.000 0.000	.4794245 -4.226126	

F

⁻ Global Footprint Network (2020). Country Trends. <u>https://data.footprintnetwork.org/#/countryTrends?type=earth&cn=5001</u>

⁻ World Bank (2020). PIB (\$ US constants de 2010). https://donnees.banquemondiale.org/indicator/NY.GDP.MKTP.KD

RESEARCH QUESTION

Which non-technological solutions could reduce plastic contamination of the global ocean ?

METHOD

 We answer that question by developing two worldwide socio-economic models, for forecasting inadequately managed plastic waste up to the year 2050 across 217 countries and territories.

More information available here

Cordier M., Uehara T., Baztan J., Jorgensen B., 2020. "Plastic pollution and economic growth: the influence of corruption and the lack of education". Preprint ResearchGate, DOI: 10.13140/RG.2.2.23198.97601. License CC BY-NC-SA 4.0. Available at:

https://www.researchgate.net/publication/341258750_Plastic_pollution_and_economic_growth_the_influence_of_corruption_and_the_lack_of_education

METHOD: MODEL EQUATIONS

• Equation 1 : general equation merging Eq. 2., Eq. 3 (or Eq. 3bis) and population size

Inadequately managed plastic waste = plastic waste per capita x inadequately managed waste % x population

• **Equation 2** : estimating plastic waste per capita

 $ln(Plastic waste per capita) = \alpha + \beta ln(Q_i) + \gamma ln(Q_i)^2 + \delta X_i + \varepsilon_i$

where the subscript *i* denotes countries, α is an intercept, Q_i is income per capita, X_i is a vector of exogenous variables explaining *plastic waste per capita*, and ε_i are the disturbance terms.

Equation 3 : estimating inadequately managed waste percentage (includes corruption control policy)

Inadequately managed waste $\% = \frac{e^{\rho_1 + \sigma_1 \ln(Q_i) + \tau_1 C_i + \varphi_1 Z_{1i}}}{1 + e^{\rho_1 + \sigma_1 \ln(Q_i) + \tau_1 C_i + \varphi_1 Z_{1i}}}$

where ρ_1 is the constant term, C_i is the degree of corruption control, and Z_{1i} is a vector of the exogenous variable explaining *Inadequately managed waste* %.

• Equation 3bis : estimating inadequately managed waste percentage (includes education)

Inadequately managed waste $\% = \frac{e^{\rho_2 + \sigma_2 \ln(Q_i) + \tau_2 E_i + \varphi_2 Z_{2i}}}{1 + e^{\rho_2 + \sigma_2 \ln(Q_i) + \tau_2 E_i + \varphi_2 Z_{2i}}}$

where ρ_2 is the constant term, E_i is the educational level, and Z_{2i} is a vector of the exogenous

variable explaining Inadequately managed waste %.

In Equation 2 (plastic waste per capita)

- We included the influence of:
 - Income per capita (GDP per capita in \$/year)
 - Urbanisation (% of total population)
 - International tourism on small islands (dummy variable [0, 1])
 - Market regulatory quality (percentile rank)

Table 2. Linear regression model estimate for Plastic waste per capita (natural logarithm) (Eq. 2).

			-	
Variable	Coefficient	Std. Error	<i>p</i> -Value	
LN (GDP per capita)	1.573	0.708	0.028	**
(LN (GDP per capita)) ²	-0.080	0.039	0.041	**
Small islands	0.562	0.139	0.000	***
Urban population	0.012	0.003	0.001	***
1 1	0.008	0.004	0.065	*
Market regulatory quality	-5.347	3.151	0.092	*
Constant	-5.547	3.131	0.092	т
\mathbb{R}^2	0.4804			
AIC	326.3714			
BIC	344.3951			
N	149			
*** $p < 0.01$, ** $p < 0.05$, *	* $p < 0.10$.			

In Equation 3 (inadequately managed waste %)

- We included corruption control policies (estimate from -2.5 to +2.5) following Biswas et al. (2012) who demonstrated controlling corruption reduces polluting emissions (Candau and Dienesch, 2017; Biswas et al., 2012; Milfont and Markowitz, 2016; Damania et al., 2003).
 - Corruption = when the public power is used for private gain, including petty and grand forms of corruption and the State is captured by elites and private interests (definition from the World Bank).

In Equation 3_{bis} (inadequately managed waste %)

- We included education (number of years spend at school per inhabitant) because:
 - making informed pro-environmental choices is difficult if one has no knowledge (Gifford and Nilsson, 2014; Vicente-Molina et al., 2013; Hidalgo-Ruz et al., 2018).
 - A minimum level of education is required to develop the ability to manage contrasting information, a skill that is central to ecological behaviors (Otto and Pensini, 2017).

In Equation 3 and 3_{bis}

- We also included other explanatory variables :
 - GDP per capita (natural logarithm)
 - International tourism on small islands (dummy variable [0, 1])
 - Geographical variables for Middle East and African countries, and Latin American countries (dummy variables [0, 1])

Table 3. Logistic model estimate for inadequately managed waste percentage with a focus on corruption control policies (Eq. 3).

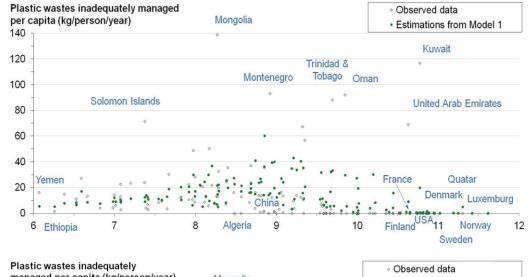
Variable	Coefficient	Std. Error	p-Value	
LN (GDP per capita)	-1.159	0.410	0.005	***
Corruption control policies	-1.244	0.562	0.027	**
Middle East and African countries	2.215	0.926	0.017	**
Latin American countries	3.057	0.885	0.001	***
Small islands	-1.684	0.809	0.037	**
Constant	9.926	3.683	0.007	***
Pseudo R ²	0.5411			
Log likelihood	-38.8019			
AIC	89.6037			
BIC	106.4278			
Ν	122			

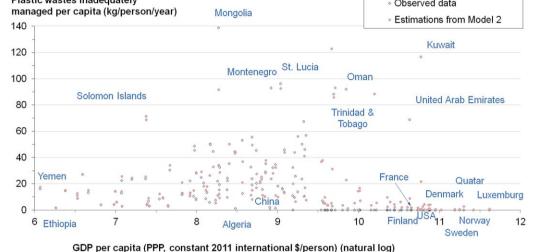
*** p < 0.01, ** p < 0.05, * p < 0.10.

Tuble in Degistre mouel estimate for manequately managea waste percentage with									
a focus on education_policies (Eq. 3 _{bis}).									
Variable	Coefficient	Std. Error	<i>p</i> -Value						
Years of school	-0.437	0.174	0.012	**					
LN (GDP per capita)	-1.385	0.387	0.000	***					
Latin American countries	2 297	1 1 2 0	0.002	***					

Table 4. Logistic model estimate for inadequately managed waste percentage with

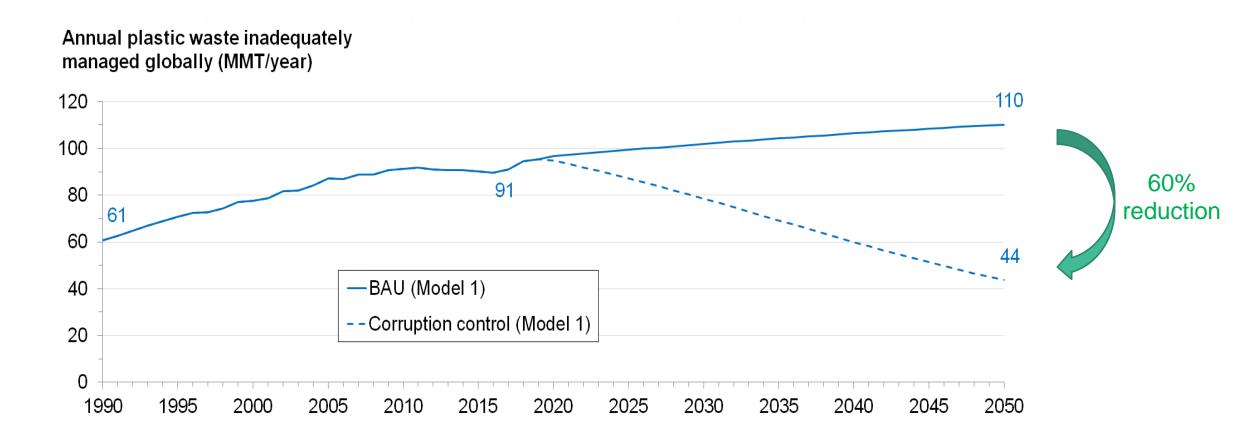
LN (GDP per capita)	-1.385	0.387	0.000	***
Latin American countries	3.287	1.120	0.003	***
Constant	16.179	3.717	0.000	***
Pseudo R ²	0.6140			
Log likelihood	-26.7485			
AIC	61.4971			
BIC	71.9177			
N	100			


*** p < 0.01, ** p < 0.05, * p < 0.10.

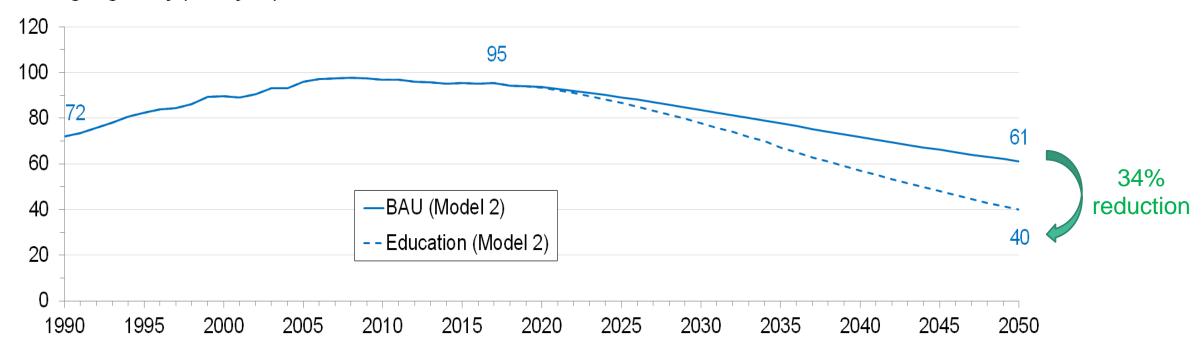

RESULTS BUSINESS-AS-USUAL SCENARIO (COUNTRY BY COUNTRY)

 The top 43 countries generating the highest amounts of inadequately managed plastic waste in 2017

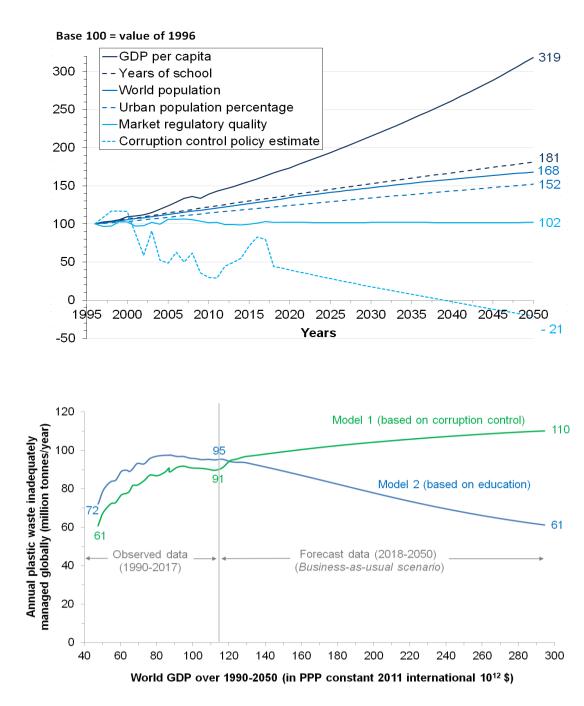
Observed data from World Bank (2018a, 2019)							BAU scenario (results from Model 2 except in the ranges where results from Models 1 and 2 are shown)			
Country	Income cate- gory	contro	uption of policy imate		ars of coling	Popu- lation (million)	Plastic waste generation rate (kg/person/yr)	% Inadequately managed waste	Inadequately managed plastic waste (MMT/yr)	Inadequately managed plastic waste (MMT/yr)
(Years)	→	1996	2017	1995	2010	2017	2017	2017	2017	2050
1 India	LMC	-0.38	-0.24 🗡	3.51	5.39 🗡	1338.7	20.2	79.6%	13.85 – 21.57	4.50 - 8.98
2 China	UMC	-0.27	- 0.27 →	5.69	7.12 🗡	1386.4	31.0	32.2%	12.38 – 13.82	1.71 – 10.05
3 Brazil	UMC	-0.02	-0.53 🍾	4.84	7.66 🗡	207.8	44.8	94.0%	8.64 – 8.75	5.11 – 8.66
4 Mexico	UMC	-0.51	-0.93 🍾	6.48	8.33 🗡	124.8	45.0	85.1%	4.78 – 5.29	1.80 – 7.46
5 Indonesia	LMC	-0.86	-0.25 🥕	4.21	7.26 🗡	264.6	30.1	53.7%	2.89 – 4.28	0.78 – 0.80
6 Pakistan	LMC	-1.22	-0.78 🗡	2.77	4.45 🗡	207.9	17.8	90.8%	2.77 – 3.37	3.46 – 3.49
7 Nigeria	LMC	-1.19	-1.07 🥕	N.A.	N.A.	190.9	19.4	80.5%	2.91 – 2.98	7.76 – 7.99
8 Bangladesh	LMC	-0.97	-0.83 🗡	3.29	4.91 🗡	159.7	15.5	92.1%	2.01 – 2.29	1.57 – 1.69
9 Colombia	UMC	-0.51	-0.37 🥕	6.09	8.45 🗡	48.9	46.6	92.8%	2.10 – 2.12	1.98 – 3.20
10 Argentina	HIC	-0.10	-0.26 🍾	8.34	9.48 🥕	44.0	44.3	79.4%	1.70 – 1.55	0.56 – 1.57
11 Vietnam	LMC	-0.49	-0.58 🍾	4.60	7.45 🗡	94.6	19.6	69.9%	1.16 – 1.30	0.23 – 0.67
12 Philippines	LMC	-0.36	-0.48 🍾	7.12	8.18 🗡	105.2	27.0	44.3%	1.26 – 1.54	0.15 – 1.16
13 Peru	UMC	-0.40	-0.50 🍾	7.25	8.68 🗡	31.4	45.5	86.8%	1.24 – 1.34	0.32 – 1.75
14 Egypt	LMC	-0.47	-0.54 🍾	4.05	6.55 🥕	96.4	19.7	53.8%	1.02 – 1.68	0.13 – 2.29
15 Ethiopia	LIC	-0.93	-0.56 🥕	N.A.	N.A.	106.4	9.6	97.6%	0.90 – 1.00	0.92 – 1.20
16 Morocco	LMC	-0.11	-0.13 🖌	2.66	4.24 🗡	35.6	29.8	84.6%	0.90 - 0.93	0.53 – 1.45
17 Chile	HIC	1.45	1.04 🍾	8.40	9.71 🗡	18.5	61.2	72.3%	0.59 – 0.82	0.24 – 0.44
18 Venezuela	UMC	-0.86	-1.36 🍾	5.5	8.16 🥕	29.4	31.2	89.1%	0.82 – 0.88	0.38 – 1.09
19 Turkey	UMC	-0.15	-0.19 🍾	4.81	6.56 🗡	81.1	40.4	24.4%	0.56 – 0.80	0.08 – 0.17
20 Europe - 28	HIC	1.18	1.09 🍾	9.13	11.23	512.2	49.7	3.1%	0.80 - 1.01	0.07 – 1.13
[]				[]					[.]
Total 43 countri	ies								77.3 – 86.9	49.6 - 90.9
Total world (21	7 countri	es)							91.0 – 95.4	61.2 – 110.2


 Estimations from Models 1 and 2 and comparison with observed data in 141 pays in 2011-2017.

RESULTS: CONTROLLING CORRUPTION SCENARIO


 In the top 43 countries discarding the highest amounts of inadequately managed plastic waste, corruption & lobby control policies are raised closer to the level of France and Estonia in 2017

RESULTS: EDUCATION SOLUTION SCENARIO


 In the top 43 countries, the number of schooling years for indviduals ≥ 25 years old is increased to 12 years

Annual plastic waste inadequately managed globally (MMT/year)

CONCLUSION

- Our model simulations show the growth of GDP per capita in the BAU scenario will not create sufficient investment capacity in waste treatment infrastructures to resolve plastic waste contamination of the ecosystems by 2050.
- Non-technological solutions such as corruption &
 lobby control policies as well as education are able
 to reduce inadequately managed plastic waste.
 They must be part of implemented interventions.

THANK YOU FOR LISTENING

More information is available here:

https://www.researchgate.net/publication/341258750_Plastic_pollution_and_economic_growth_the_influe nce_of_corruption_and_the_lack_of_education