

Negative impact of heavy-tailed uncertainty and error distributions...

Pascal PERNOT (Groupe ThéoSim, ICP) 2024-06-04

... on the reliability of calibration statistics for machine learning regression tasks

??? What am I doing here ???

- Prediction (ML or other models)
 - **UQ** (*quantify* prediction uncertainty)
 - **UQ validation** (test uncertainty *calibration*)
 - Test the *reliability* of calibration statistics

Our confidence in the UQ approach depends on it !

How to validate prediction uncertainty?

UQ metrics and validation data

UQ validation methods depend on UQ information¹

- full distribution (probability-based UQ metrics)
- prediction intervals (interval-based UQ metrics)
- uncertainty (variance-based UQ metrics)
 - Validation dataset

$$egin{aligned} &\{X_i, (V_i, u_{V_i}), (C_i, u_{C_i})\}_{i=1}^M \ &\longrightarrow \left\{X_i, E_i = C_i - V_i, u_{E_i} = \sqrt{u_{C_i}^2 + u_{V_i}^2}
ight\}_{i=1}^M \end{aligned}$$

Calibration: the generative model

- Prediction uncertainty quantifies the dispersion of errors²
 - \longrightarrow calibration is based on a *probabilistic* model

$$E_i \sim D(\mu=0,\sigma=u_{E_i})$$
 .

• Errors have a *compound distribution*

$$p_H(E) = \int_0^\infty p_D(E|u_E)\, p_G(u_E)\, du_E$$

• Example: the Normal-Inverse-Gamma (*NIG*) model

if
$$u_E^2 \sim \Gamma^{-1}(
u/2,
u/2)$$
 and $D=N(0,1)$, then $E\sim t(
u)$ and $E^2\sim F(1,
u)$

Derived calibration equations

• Law of total variance

$$egin{aligned} \mathrm{Var}_{H}(E) &= \langle \mathrm{Var}_{D}(E|u_{E})
angle_{G} + \mathrm{Var}_{G}\left(\langle E|u_{E}
angle_{D}
ight) \ &= < u_{E}^{2} > + \underbrace{\mathrm{Var}_{G}\left(\langle E|u_{E}
angle_{D}
ight)} \ & ext{ and } \ & ext{Var}(E) = < E^{2} > - \swarrow E^{2^{2}} \ &\Longrightarrow < E^{2} > = < u_{E}^{2} > \end{aligned}$$

• Scaled errors (*z*-scores)

$$Z_i = rac{E_i}{u_{E_i}} \sim D(0,1)$$
 $\Longrightarrow < Z^2 >= 1$

Average Calibration Statistics

• Relative Calibration Error (target = 0)

RCE = (RMV - RMSE)/RMV

where $RMV = \sqrt{< u_E^2 >}$ and $RMSE = \sqrt{< E^2 >}$

• Z-scores Mean Squares (target = 1)

$$ZMS = <(E/uE)^2>$$

Note that RCE ignores the (E_i, u_{E_i}) pairing, so that **it should be more forgiving** than ZMS

Conditional/Local Calibration

- Average calibration does not guarantee the calibration of individual predictions.
- Conditional calibration is estimated by splitting data into N bins and testing calibration for each bin
 - $\circ\,$ RCE : Reliability diagram $^3 < E^2 >_{B_i} = < u_E^2 >_{B_i}$
 - $\circ\,$ ZMS: Local ZMS analysis $^4 < Z^2 >_{B_i} = 1$
- Choice of binning variable:
 - $\circ\,$ Binning vs u_E : consistency
 - \circ Binning vs *X* : *adaptivity*

Application to "calibrated" datasets

The datasets⁵

jc⁄þ

Set #	Name	Size (M)	Reference
1	Diffusion_RF	2040	Palmer et al. (2022)
2	Perovskite_RF	3834	Palmer et al. (2022)
3	Diffusion_LR	2040	Palmer et al. (2022)
4	Perovskite_LR	3836	Palmer et al. (2022)
5	Diffusion_GPR_Bayesian	2040	Palmer et al. (2022)
6	Perovskite_GPR_Bayesian	3818	Palmer et al. (2022)
7	QM9_E (IR)	13885	Busk et al. (2022)
8	logP_10k_a_LS-GCN	5000	Rasmussen et al. (2023)
9	logP_150k_LS-GCN	5000	Rasmussen et al. (2023)

ZMS vs RCE - the problem !⁶

 u_E^2 distributions: $\Gamma^{-1}(
u,
u)$ fit

E^2 distributions: F(a,b) fit vs. NIG(u)

Skewness of u_E^2 and E^2 distributions⁷

ZMS vs RCE - Sensitivity to u_E by decimation

ZMS vs RCE - Sensitivity to ${\cal E}$

JUP

TIG model: $u_E^2 \sim \Gamma^{-1}(
u_{IG},
u_{IG}); \, D=t_u(
u_D)$

Does binning improve the situation?

jc/p

- 20 equal-size bins along u_E
- estimate β_{GM} for each binned variable

Reliability diagram without β_{GM} filtering

Reliability diagram with β_{GM} filtering

Conclusions

- Uncertainty and error distributions often have heavy tails
 - $\circ < X^2 >$ is not robust to outliers (cf. RMSD vs. MAE)
 - the RCE statistic is sensitive to $< u_E^2 >$ and/or $< E^2 >$; $< Z^2 >$ is more reliable
 - estimation of *validation Cls* is also problematic
- Binning for conditional calibration statistics does not help
- Robust skewness statistic eta_{GM} can be used to detect problematic cases
- Iterative training based on outlying errors and/or uncertainties might help to tame rebel distributions

Perspectives

- ic/p
- Validation of calibration statistics based on variance-based UQ metrics appears simple, but can be excessively tricky

It is probably safer to use intervals-based UQ metrics (e.g. using *conformal inference*)

However,

- standard conformal inference ensures *average* calibration
- general methods for *adaptive* conformal inference are still in development.⁸

Thanks

 This work benefited from earlier studies in collaboration with Andreas Savin on the reliability and improvement of performance metrics for the comparison of computational chemistry methods.⁹

Thank you for your attention !

Supplementary Material

Why UQ?

- ML models have **many parameters** and a high risk to be overly sensitive to small variations of inputs, notably for out-of-the-box predictions.
 - Assignment of an uncertainty to each prediction is expected to flag predictions with outstanding values and is central to Active Learning
- UQ is also a necessity when ML predictions replace physical experiments (Virtual Measurements)
 - comparisons, conformity testing

UQ validation tests the reliability of prediction uncertainty

Many ML-UQ approaches...

- Direct methods¹⁰
 - $\circ\,$ Intrinsic methods
 - Gaussian processes, Random Forests, Ridge regression, Bayesian neural networks, Evidential deep learning¹¹
 - Ensemble methods
 - Dropout, Query by Commitee, Bootstrap
- A posteriori / post-hoc methods
 - Temperature scaling¹², Isotonic regression¹³, Conformal prediction¹⁴

- **10**. Tran *et al.* (2020) *Mach. Learn.: Sci. Technol.* **1**:025006 **11**. Soleimany *et al.* (2021) *ACS Cent. Sci.* **7**:1356-1367
- 12. Mortensen *et al.* (2005) *Phys. Rev. Lett.* **95**:216401
- 13. Busk et al. (2022) Mach. Learn.: Sci. Technol. 3:015012

¹⁰ Trans at al (2020) March Leaving (Cai Technol 1.0)

^{14.} Hu et al. (2022) Mach. Learn.: Sci. Technol. 3:045028

Reliability of validation ζ -scores

jc⁄p

• Cls are estimated by bootstrapping (BCa)

