

Negative impact of heavy-tailed uncertainty and error distributions…

Pascal PERNOT (Groupe ThéoSim, ICP) 2024-06-04

… on the reliability of calibration statistics for machine learning regression tasks

??? What am I doing here ???

- Prediction (ML or other models)
	- UQ (quantify prediction uncertainty)
		- **UQ validation** (test uncertainty calibration)
			- Test the reliability of calibration statistics

Our confidence in the UQ approach depends on it !

How to validate prediction uncertainty ?

UQ metrics and validation data

UQ validation methods depend on UQ information¹

- full distribution (probability-based UQ metrics)
- prediction intervals (interval-based UQ metrics)
- uncertainty (variance-based UQ metrics)
	- Validation dataset

$$
\{X_i,(V_i,u_{V_i}),(C_i,u_{C_i})\}_{i=1}^M\\ \longrightarrow \left\{X_i,E_i=C_i-V_i,u_{E_i}=\sqrt{u_{C_i}^2+u_{V_i}^2}\right\}_{i=1}^M
$$

Calibration: the generative model

- Prediction uncertainty quantifies the dispersion of $errors²$
	- \longrightarrow calibration is based on a probabilistic model

$$
E_i \sim D(\mu=0,\sigma=u_{E_i})
$$

• Errors have a compound distribution

$$
p_H(E)=\int_0^\infty p_D(E|u_E)\,p_G(u_E)\,du_E
$$

• Example: the Normal-Inverse-Gamma (NIG) model

$$
\text{if } u_E^2 \sim \Gamma^{-1}(\nu/2, \nu/2) \text{ and } D = N(0,1),\\ \text{then } E \sim t(\nu) \text{ and } E^2 \sim F(1,\nu)
$$

Derived calibration equations

• Law of total variance

$$
\begin{aligned} \mathrm{Var}_H(E) &= \langle \mathrm{Var}_D(E|u_E) \rangle_G + \mathrm{Var}_G\left(\langle E|u_E\rangle_D\right) \\ &= + \frac{\mathrm{Var}_G\left(\langle E|u_E\rangle_D\right)}{\mathrm{and}} \\ \mathrm{Var}(E) &= - \cancel{}^2 \\ \Longrightarrow & = \end{aligned}
$$

• Scaled errors (z-scores)

$$
Z_i = \frac{E_i}{u_{E_i}} \sim D(0,1)
$$

$$
\Longrightarrow \; =1
$$

Average Calibration Statistics

• Relative Calibration Error (target $= 0$)

 $RCE = (RMV - RMSE)/RMV$

where $RMV = \surd < u_E^2 >$ and $\sqrt{< u_E^2>}$ and $RMSE = \sqrt{< E^2>}$

• Z-scores Mean Squares (target = 1)

$$
ZMS = <(E/uE)^2>
$$

Note that RCE ignores the $\left(E_i, u_{E_i}\right)$ pairing, so that **it should be more forgiving** than ZMS

Conditional/Local Calibration

- Average calibration does not guarantee the calibration of individual predictions.
- Conditional calibration is estimated by splitting data into N bins and testing calibration for each bin
	- \circ RCE : Reliability diagram $^3 < E^2 >_{B_i} = < u_E^2 >_{B_i}$
	- $\, \circ \,$ ZMS: Local ZMS analysis 4 $<$ Z^2 $>_{B_i} = 1$
- Choice of binning variable:
	- $\,\circ\,$ Binning vs u_E : consistency
	- $\, \circ \,$ Binning vs X : adaptivity

Application to "calibrated" datasets

The datasets⁵

$i c \rho$

ZMS vs RCE - the problem !⁶

 m^2_E distributions: $\Gamma^{-1}(\nu,\nu)$ fit

E^2 distributions: $F(a,b)$ fit vs. $NIG(\nu)$

Skewness of u_E^2 and E^2 distributions⁷

ZMS vs RCE - Sensitivity to u_E by decimation

ZMS vs RCE - Sensitivity to E

TIG model: $u_E^2 \sim \Gamma^{-1}(\nu_{IG},\nu_{IG});\, D=t_u(\nu_D)$

Does binning improve the situation ?

- 20 equal-size bins along u_E
- $\bullet\,$ estimate β_{GM} for each binned variable

Reliability diagram without β_{GM} filtering

 $RMS(uE)$

Set 2

Reliability diagram with β_{GM} filtering

Conclusions

- Uncertainty and error distributions often have heavy tails
	- $\delta < X^2 >$ is not robust to outliers (cf. RMSD vs. MAE)
		- $\bullet\,$ the RCE statistic is sensitive to $< u_E^2 >$ and/or $< E^2 >$; $< Z^2 >$ is more reliable
	- estimation of validation CIs is also problematic
- Binning for conditional calibration statistics does not help
- \bullet Robust skewness statistic β_{GM} can be used to detect problematic cases
- Iterative training based on outlying errors and/or uncertainties might help to tame rebel distributions

Perspectives

• Validation of calibration statistics based on variance-based UQ metrics appears simple, but can be excessively tricky

It is probably safer to use intervals-based UQ metrics (e.g. using conformal inference)

However,

- standard conformal inference ensures average calibration
- general methods for *adaptive* conformal inference are still in development.⁸

Thanks

• This work benefited from earlier studies in collaboration with Andreas Savin on the reliability and improvement of performance metrics for the comparison of computational chemistry methods.⁹

Thank you for your attention !

Supplementary Material

Why UQ ?

- ML models have many parameters and a high risk to be overly sensitive to small variations of inputs, notably for out-of-the-box predictions.
	- Assignment of an uncertainty to each prediction is expected to flag predictions with outstanding values and is central to Active Learning
- UQ is also a necessity when ML predictions replace physical experiments (Virtual Measurements)
	- comparisons, conformity testing

UQ validation tests the reliability of prediction uncertainty

Many ML-UQ approaches…

- Direct methods 10
	- Intrinsic methods
		- Gaussian processes, Random Forests, Ridge regression, Bayesian neural networks, Evidential deep learning¹¹
	- Ensemble methods
		- Dropout, Query by Commitee, Bootstrap
- A posteriori / post-hoc methods
	- $\, \circ \,$ Temperature scaling 12 , Isotonic regression 13 , Conformal prediction 14

^{10.} Tran et al. (2020) Mach. Learn.: Sci. Technol. 1:025006

^{11.} Soleimany et al. (2021) ACS Cent. Sci. 7:1356-1367

^{12.} Mortensen et al. (2005) Phys. Rev. Lett. 95:216401

^{13.} Busk et al. (2022) Mach. Learn.: Sci. Technol. 3:015012

^{14.} Hu et al. (2022) Mach. Learn.: Sci. Technol. 3:045028 26/27

Reliability of validation ζ -scores

• CIs are estimated by bootstrapping (BCa)

