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??? What am I doing here ???

Our confidence in the UQ approach depends on it !

• Prediction (ML or other models)

◦ UQ (quantify prediction uncertainty)

▪ UQ validation (test uncertainty calibration)

• Test the reliability of calibration statistics
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How to validate prediction uncertainty ?



UQ metrics and validation data

UQ validation methods depend on UQ information1

• full distribution (probability-based UQ metrics)

• prediction intervals (interval-based UQ metrics)

• uncertainty (variance-based UQ metrics)
 

◦ Validation dataset
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1. Pernot (2022) J. Chem. Phys. 156:114109; J. Chem. Phys. 157:144103. 5/27



Calibration: the generative model

if  and ,

then  and 

• Prediction uncertainty quantifies the dispersion of errors2

 calibration is based on a probabilistic model

• Errors have a compound distribution

• Example: the Normal-Inverse-Gamma (NIG) model
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2. BIPM et al. (2008) Evaluation of measurement data - Guide to the expression of uncertainty in measurement (GUM), JCGM. 6/27



Derived calibration equations

• Law of total variance

• Scaled errors (z-scores)
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Average Calibration Statistics

Note that  ignores the  pairing, so that it should be more forgiving than 

• Relative Calibration Error (target = 0)

where  and 

• Z-scores Mean Squares (target = 1)

RCE = (RMV − RMSE)/RMV

RMV = < >u2
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Conditional/Local Calibration

• Average calibration does not guarantee the calibration of individual predictions.

• Conditional calibration is estimated by splitting data into  bins and testing calibration for each bin

• Choice of binning variable:

N

◦ RCE : Reliability diagram3

◦ ZMS: Local ZMS analysis4
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◦ Binning vs  : consistency

◦ Binning vs  : adaptivity
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3. Levi et al. (2022) Sensors 22:5540
4. Pernot (2023) APL Machine Learning 1:046121 9/27



Application to
“calibrated” datasets



The datasets5

Set # Name Size (M) Reference

1 Diffusion_RF 2040 Palmer et al. (2022)

2 Perovskite_RF 3834 Palmer et al. (2022)

3 Diffusion_LR 2040 Palmer et al. (2022)

4 Perovskite_LR 3836 Palmer et al. (2022)

5 Diffusion_GPR_Bayesian 2040 Palmer et al. (2022)

6 Perovskite_GPR_Bayesian 3818 Palmer et al. (2022)

7 QM9_E (IR) 13885 Busk et al. (2022)

8 logP_10k_a_LS-GCN 5000 Rasmussen et al. (2023)

9 logP_150k_LS-GCN 5000 Rasmussen et al. (2023)

5. Palmer et al. (2022) npj Comput. Mater. 8:115; Busk et al. (2022) Mach. Learn.: Sci. Technol. 3:015012; Rasmussen et al. (2023) J. Cheminf. 15:1-17. 11/27



ZMS vs RCE - the problem !6

6. ; validation by = (ϑ − )/ζϑ ϑref Uϑ,95 abs( ) ≤ 1ζϑ 12/27



 distributions:  fitu2
E (ν, ν)Γ−1
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 distributions:  fit vs. E2 F(a, b) NIG(ν)
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Skewness of  and  distributions7u2
E E2

7.  is a robust skewness metric (Groeneveld and Meeden (1984), The Statistician 33:391; Pernot and Savin (2021) Theor. Chem. Acc. 140:24).βGM
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ZMS vs RCE - Sensitivity to  by decimationuE
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ZMS vs RCE - Sensitivity to 

TIG model: 

E
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E Γ−1 νIG νIG tu νD
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Does binning improve the situation ?

• 20 equal-size bins along 

• estimate  for each binned variable

uE

βGM
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Reliability diagram without  filteringβGM
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Reliability diagram with  filteringβGM
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Conclusions

• Uncertainty and error distributions often have heavy tails

• Binning for conditional calibration statistics does not help

• Robust skewness statistic  can be used to detect problematic cases

• Iterative training based on outlying errors and/or uncertainties might help to tame rebel distributions

◦  is not robust to outliers (cf. RMSD vs. MAE)

◦ estimation of validation CIs is also problematic

< >X2

▪ the RCE statistic is sensitive to  and/or  ;  is more reliable< >u2
E < >E2 < >Z2

βGM
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Perspectives

It is probably safer to use intervals-based UQ metrics (e.g. using conformal inference)

However,

• Validation of calibration statistics based on variance-based UQ metrics appears simple, but can be excessively tricky

• standard conformal inference ensures average calibration

• general methods for adaptive conformal inference are still in development.8

8. Angelopoulos & Bates (2023) Found. Trends Mach. Learn. 16:494-591; Susmann et al. (2023) arXiv:2312.00448 22/27



Thanks

Thank you for your attention !

• This work benefited from earlier studies in collaboration with Andreas Savin

on the reliability and improvement

of performance metrics for the comparison

of computational chemistry methods.9

9. Pernot and Savin (2018) J. Chem. Phys. 148:241707; (2020) J. Chem. Phys. 152:164108; (2020) J. Chem. Phys. 152:164109; Pernot et al. (2020) Mach. Learn.: Sci. Technol. 1:035011; Pernot
and Savin (2021) Theor. Chem. Acc. 140:24. 23/27



Supplementary Material



Why UQ ?

UQ validation tests the reliability of prediction uncertainty

• ML models have many parameters and a high risk
to be overly sensitive to small variations of inputs,
notably for out-of-the-box predictions.

◦ Assignment of an uncertainty to each prediction is
expected to flag predictions with outstanding values
and is central to Active Learning

• UQ is also a necessity when ML predictions replace
physical experiments (Virtual Measurements)

◦ comparisons, conformity testing
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Many ML-UQ approaches…

• Direct methods10

◦ Intrinsic methods

◦ Ensemble methods

▪ Gaussian processes, Random Forests, Ridge regression, Bayesian neural networks, Evidential deep learning11

▪ Dropout, Query by Commitee, Bootstrap

• A posteriori / post-hoc methods

◦ Temperature scaling12, Isotonic regression13, Conformal prediction14

10. Tran et al. (2020) Mach. Learn.: Sci. Technol. 1:025006
11. Soleimany et al. (2021) ACS Cent. Sci. 7:1356-1367
12. Mortensen et al. (2005) Phys. Rev. Lett. 95:216401
13. Busk et al. (2022) Mach. Learn.: Sci. Technol. 3:015012
14. Hu et al. (2022) Mach. Learn.: Sci. Technol. 3:045028 26/27



Reliability of validation -scoresζ

• CIs are estimated by bootstrapping (BCa)
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