Validation of prediction uncertainty in ML

Pascal PERNOT [\(pascal.pernot@cnrs.fr\)](mailto:pascal.pernot@cnrs.fr)

Institut de Chimie Physique, UMR8000, CNRS/Univ. Paris-Saclay

IA Symposium (2023-05-26)

[Uncertainty Quantification in Machine Learning](#page-2-0)

- **[Validation methods for calibration, consistency and adaptivity](#page-6-0)**
- **[Applications to recent ML-UQ datasets](#page-14-0)**
- **[Conclusions](#page-25-0)**
- **[Supplementary Information](#page-27-0)**

Why UQ ?

- ML models have many parameters and a high risk to be overly sensitive to small variations of inputs, notably for out-of-the-box predictions.
- Assignment of an uncertainty to each prediction is expected to flag predictions with outstanding values.
- UQ is also a necessity when ML predictions replace physical experiments (Virtual Measurements).

UQ validation tests the reliability of prediction uncertainty

UQ metrics and validation model

UQ validation methods depend on UQ information

- **•** full distribution
- prediction intervals or expanded uncertainty (half-range of a probability interval)
- **uncertainty** (variance-based UQ metric)

Prediction uncertainty quantifies the dispersion of errors

Validation is based on a probabilistic model

 $E_i \sim D(0, u_{E_i})$

where $D(\mu, \sigma)$ is a distribution of errors (a priori unknown) with mean *µ* and standard deviation σ and errors should be unbiased ($\lt E \gt = 0$)

Notations: UQ validation dataset

Let us consider a typical validation set

- \mathcal{X}_i : input feature(s) at point $i\in 1$: M
- V_i : predicted value at point $i \in 1 : M$
- u_{V_i} : uncertainty on V_i (*model* uncertainty)
- R_i : reference value
- u_{R_i} : uncertainty on R_i (data uncertainty)

From which one gets

•
$$
E_i = R_i - V_i
$$
: [prediction] error

•
$$
u_{E_i} = \sqrt{u_{V_i}^2 + u_{R_i}^2}
$$
 (prediction uncertainty)

Validation goals

Validation goals depend on the intended use of uncertainty¹

- **Internal use** (e.g. active learning)
	- small uncertainties should imply small errors
	- calibration is not necessary (need some form of correlation)
- **External use**: prediction uncertainty has to match real world requirements (e.g. high-throughput screening of materials that have to be tested experimentally)
	- uncertainty should be **calibrated**
	- Consistency: E and u_F should be statistically consistent
	- Adaptivity: u_F should be reliable for all input features X

¹Pernot (2022) J. Chem. Phys. **157**:144103; Pernot (2023) arXiv:2303.07170

Pascal PERNOT [\(pascal.pernot@cnrs.fr\)](mailto:pascal.pernot@cnrs.fr) (ICP) [Validation of prediction uncertainty in ML](#page-0-0) IA Symposium (2023-05-26) 6 / 29

Variance-based tests of average calibration

Assuming *unbiased errors*, one should have

 $Var(E) \simeq < u_E^2 >$

or, better (as it accounts for the $(E_{i},u_{E_{i}})$ pairing) 2

 $Var(Z = E/u_F) \simeq 1$

Average calibration is a necessary condition, but it does not guarantee consistency nor adaptivity, as it might result from the compensation of under- and over-estimation of u_{E} .

²Pernot (2022) J. Chem. Phys. **157**:144103; Pernot (2023) arXiv:2303.07170

Variance-based tests of conditional calibration

Reliability of uncertainty at all levels:

Consistency can be expressed as conditional calibration³ wrt u_{E}

$$
Var(E|u_E = \sigma) = \sigma^2, \ \forall \sigma > 0
$$

or

$$
\text{Var}(Z|u_E=\sigma)=1, \ \forall \sigma>0
$$

Reliability of uncertainty throughout features space: Adaptivity is conditional calibration⁴ wrt X

 $Var(Z|X=x) = 1, \forall x \in \mathcal{X}$

 3 Levi et al. (2020) arXiv:1905.11659

⁴Angelopoulos & Bates (2021) arXiv:2107.07511; Pernot (2023) arXiv:2303.07170

Pascal PERNOT [\(pascal.pernot@cnrs.fr\)](mailto:pascal.pernot@cnrs.fr) (ICP) [Validation of prediction uncertainty in ML](#page-0-0) IA Symposium (2023-05-26) 8 / 29

Exploratory plots

- plot E (or Z) vs u_E and guiding lines $y = k * x$ (if $u_E \neq c^{te}$)
- plot $Z = E/u_F$ (z-score) vs X and guiding lines $y = k$
- \bullet plot running quantiles (Cl_{95})

An incorrect shape is sufficient to reject calibration, consistency or adaptivity, but if the plot seems OK, one needs a more quantitative approach.

[Validation methods for calibration, consistency and adaptivity](#page-6-0) [Graphical methods](#page-8-0)

Binning-based consistency tests⁵

deviation of a few points, without notable trend, is statistically expected (error bars are 95% probability intervals)

⁵Levi et al. (2020) arXiv:1905.11659; Pernot (2022) J. Chem. Phys. **157**:144103

Binning-based adaptivity tests

Conditional calibration implemented through LZV / LZISD analysis wrt X

Ranking-based tests

The correlation coefficient between $|E|$ and u_E is often reported

- it is independent on the scales of E and u_F and does not inform us on calibration
- because of the probabilistic link between $|E|$ and u_F . one should not expect a strong correlation (*>* 0*.*5).
	- what is a good value ???
- large errors should derive from large uncertainties, but small errors might come from small uncertainties as well as from large uncertainties

Correlation/rank tests are mostly useless for variance-based UQ metrics

Confidence curves

How does an error statistic (MAE, RMSE. . . .) change when one removes the errors associated with the largest uncertainties ?

One estimates

$$
c_S(k; E, u_E) = S(E | u_E < u_k)
$$

where

- \bullet S is an error statistic (RMSE, MAE...)
- \bullet u_k is the largest uncertainty after removal the k % largest uncertainties from u_F $(k \in \{0, 1, \ldots, 99\})$
- A confidence curve is obtained by plotting $c_5(k)$ vs k
	- a monotonically decreasing confidence curve indicates a good association between large errors and large uncertainties. **It is a good validation test for active learning**

Confidence curve references

• for a consistent dataset as the one treated here, one sees that the *oracle* is of no help for validation⁶

⁶Pernot (2022) arXiv:2206.15272

Pascal PERNOT [\(pascal.pernot@cnrs.fr\)](mailto:pascal.pernot@cnrs.fr) (ICP) [Validation of prediction uncertainty in ML](#page-0-0) IA Symposium (2023-05-26) 14 / 29

Main ML-UQ approaches

• Direct methods⁷

- **a** Intrinsic methods
	- Gaussian processes, Random Forests, Ridge regression
	- \bullet Bayesian neural networks, Evidential deep learning⁸
- **•** Ensemble methods
	- Dropout, Query by Commitee, Bootstrap. . .

A posteriori / post-hoc methods

Temperature scaling⁹, Isotonic regression¹⁰, Conformal prediction¹¹...

¹¹Hu et al. (2022) Mach. Learn.: Sci. Technol. **3**:045028

Pascal PERNOT [\(pascal.pernot@cnrs.fr\)](mailto:pascal.pernot@cnrs.fr) (ICP) [Validation of prediction uncertainty in ML](#page-0-0) IA Symposium (2023-05-26) 15 / 29

⁷Tran et al. (2020) Mach. Learn.: Sci. Technol. **1**:025006

⁸Soleimany et al. (2021) ACS Cent. Sci. **7**:1356-1367

⁹Mortensen et al. (2005) Phys. Rev. Lett. **95**:216401

¹⁰Busk et al. (2022) Mach. Learn.: Sci. Technol. **3**:015012

Formation heats by the mBEEF method¹²

Bayesian Ensembles method inflates parametric uncertainty of exchange-correlation model to ensure average calibration

- strong functional constraints: consistency & adaptivity ???
- **o** does not disambiguate model uncertainty from reference data uncertainty
- Set of $M = 257 \{V_i, R_i, u_{V_i}\}$

¹² Pandey and Jacobsen (2015) Phys. Rev. B [\(https://tinyurl.com/5dv9spnn\)](https://tinyurl.com/5dv9spnn), Pernot (2017) J. Chem. Phys. [\(https://tinyurl.com/yb6uzwzr\)](https://tinyurl.com/yb6uzwzr), Pernot and Cailliez (2017) AIChE J. [\(https://tinyurl.com/2xxcfs2f\)](https://tinyurl.com/2xxcfs2f)

Pascal PERNOT [\(pascal.pernot@cnrs.fr\)](mailto:pascal.pernot@cnrs.fr) (ICP) [Validation of prediction uncertainty in ML](#page-0-0) IA Symposium (2023-05-26) 16 / 29

Formation heats by the mBEEF method

- $Var(Z) = 1.3(2)$, average calibration OK
- the LZISD analysis shows that small PUs are underestimated by a factor up to 2, while large ones are overestimated by up to 60 %
- the confidence curve is not monotonously decreasing

Bayesian Neural Network

Data issued from a BNN trained to predict a MD potential¹³ ($M = 5923$ **)**

• The color scale for uncertainty is not a proper tool for validation

Pascal PERNOT [\(pascal.pernot@cnrs.fr\)](mailto:pascal.pernot@cnrs.fr) (ICP) [Validation of prediction uncertainty in ML](#page-0-0) IA Symposium (2023-05-26) 18 / 29

¹³Häse et al. (2019) [Chem. Sci.](https://doi.org/10.1039/C8SC04516J) **10**:2298

Bayesian Neural Network

• This BNN uncertainty is NOT calibrated $(Var(Z) = 30)$ but might still be used for active learning. . .

Calibrated bootstrap for impurities diffusion

Data issued from a study on a method to obtain calibrated ML uncertainties¹⁴ ($M = 2040$)

• Calibration seems efficient...

¹⁴Palmer et al. (2022) [npj Comput. Mater.](https://doi.org/10.1038/s41524-022-00794-8) **8**:1-9; post-hoc calibration by linear transformation of uncal. uncertainties

Pascal PERNOT [\(pascal.pernot@cnrs.fr\)](mailto:pascal.pernot@cnrs.fr) (ICP) [Validation of prediction uncertainty in ML](#page-0-0) IA Symposium (2023-05-26) 20 / 29

Calibrated bootstrap for impurities diffusion

Average calibration is excellent, but consistency of small uncertainties is not perfect (up to 50% over-estimation around $u_E = 0.2$ kcal/mol)

Calibrated bootstrap for impurities diffusion

Efficient calibration but no consistency for the smaller 50% of uncertainties; OK for Active Learning

Pascal PERNOT [\(pascal.pernot@cnrs.fr\)](mailto:pascal.pernot@cnrs.fr) (ICP) [Validation of prediction uncertainty in ML](#page-0-0) IA Symposium (2023-05-26) 22 / 29

Post-hoc calibration of ensemble predictions

Atomization energy on QM9 dataset¹⁵ ($M = 13885$)

- **o** Consistency seems OK
- Adaptivity seems problematic on "Z vs X" plot

¹⁵Busk et al. (2022) [Mach. Learn.: Sci. Technol.](https://doi.org/10.1088/2632-2153/ac3eb3) 3:015012; post-hoc calibration by non-linear transformation of uncal. uncertainties (isotonic regression)

Pascal PERNOT [\(pascal.pernot@cnrs.fr\)](mailto:pascal.pernot@cnrs.fr) (ICP) [Validation of prediction uncertainty in ML](#page-0-0) IA Symposium (2023-05-26) 23 / 29

Consistency and adaptivity

- No major consistency default
- But notable problem of adaptivity, with systematic deviations from the $y = 1$ line. Confirms the diagnostic of the "Z vs X" plot.

Pascal PERNOT [\(pascal.pernot@cnrs.fr\)](mailto:pascal.pernot@cnrs.fr) (ICP) [Validation of prediction uncertainty in ML](#page-0-0) IA Symposium (2023-05-26) 24 / 29

Confidence curves

- \bullet The confidence curve tests the consistency of E and uE
- Consistency might not be fulfilled locally in X space

Conclusions

- **Calibration/Consistency/Adaptivity** A principled framework for UQ validation
	- Calibration is easy, consistency and adaptivity are tough !
	- Adaptivity is presently a (dangerous) blind spot in ML-UQ validation studies.

Direct ML-UQ methods do not provide calibrated uncertainty

- might still be good for internal use (active learning)
- strong need for post-hoc calibration methods going beyond average calibration

UQ methods used today in computational chemistry rarely reach consistency or adaptivity

how-much mis-calibration is acceptable for a given application ?

Warmful thanks to. . .

- **Andreas "Gauss Slayer" SAVIN** (LCT, Jussieu) for so many enlightening discussions
- **Morgane VACHER** (Nantes Université) **Jonas BUSK** (Technical University of Denmark) and many others for providing me with invaluable datasets
- and **YOU**, for your attention !

[Supplementary Information](#page-27-0)

Confidence curve references

• The Oracle is the confidence curve obtained by assuming a perfect correlation between $|E|$ and u_F

 $O(k) = c_5(k; , E, |E|)$

- it is unsuitable for variance-based UQ metrics and corresponds to an unrealistic generative model: $E \sim \pm u_E$
- A **Probabilistic** reference can be built instead

$$
P(k; u_E) = \langle c_S(k; \tilde{E}, u_E) \rangle_{\tilde{E}}
$$

where a Monte Carlo average is taken over samples of

 $E_i \sim D(0, u_{E_i})$

• one can thus test the consistency of E and u_E

Consistency tests

Conditional calibration is implementred through binning wrt u_F (local calibration)

Reliability diagrams or **RMSE vs RMV plot**¹⁶

- **1** split u_F into bins
- $\textbf{2}$ estimate $\textit{Var}(E)$ and $< \textit{u}_E^2>$ for each bin
- **3** plot $\sqrt{\text{Var}(E)}$ vs $\sqrt{<\bm{u}_E^2>}$
- **4** check for deviations from the identity line

• Local Z-Variance (LZV) or **Local Z-Inverse SD** (LZISD) plots¹⁷

- **1** split u_F into bins
- **2** estimate $Var(Z = E/u_F)$ for each bin
- **3** plot $\text{Var}(Z)$ or $1/\sqrt{\text{Var}(Z)}$ at the center of each bin
- **4** check for deviations from the $y = 1$ line
- **Note**: the diagnostic might depend on the binning strategy. Bins should be as small as possible without compromising testing power. . .

Pascal PERNOT [\(pascal.pernot@cnrs.fr\)](mailto:pascal.pernot@cnrs.fr) (ICP) [Validation of prediction uncertainty in ML](#page-0-0) IA Symposium (2023-05-26) 29 / 29

 16 Levi et al. (2020) arXiv:1905.11659

¹⁷Pernot (2022) J. Chem. Phys. **157**:144103