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Uncertainty Quantification in Machine Learning Introduction

Why UQ ?

e ML models have many parameters and a high risk
to be overly sensitive to small variations of inputs,
notably for out-of-the-box predictions.

e Assignment of an uncertainty to each prediction is expected
to flag predictions with outstanding values.

e UQ is also a necessity when ML predictions replace
physical experiments (Virtual Measurements).

UQ validation tests the reliability of prediction uncertainty
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Uncertainty Quantification in Machine Learning Introduction

UQ metrics and validation model

UQ validation methods depend on UQ information

o full distribution

@ prediction intervals or expanded uncertainty
(half-range of a probability interval)

@ uncertainty (variance-based UQ metric)

Prediction uncertainty quantifies the dispersion of errors
Validation is based on a probabilistic model
E,‘ ~ D(O, UE,.)

where D(, o) is a distribution of errors (a priori unknown) with mean
w and standard deviation o and errors should be unbiased (< E >=0)
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Uncertainty Quantification in Machine Learning Introduction

Notations: UQ validation dataset

Let us consider a typical validation set
@ X; : input feature(s) at pointi€1: M
@ V; : predicted value at point i€ 1: M

@ uy, : uncertainty on V; (model uncertainty)

R; : reference value

@ ug : uncertainty on R; (data uncertainty)

From which one gets

e E; = R; — V; : [prediction] error

® ug, = \/uy, + ug (prediction uncertainty)
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Uncertainty Quantification in Machine Learning Introduction

Validation goals
Validation goals depend on the intended use of uncertainty'

o Internal use (e.g. active learning)
e small uncertainties should imply small errors

o calibration is not necessary (need some form of correlation)

@ External use: prediction uncertainty has to match real world
requirements (e.g. high-throughput screening of materials
that have to be tested experimentally)

e uncertainty should be calibrated
o Consistency: E and ug should be statistically consistent

o Adaptivity: ug should be reliable for all input features X

!Pernot (2022) J. Chem. Phys. 157:144103; Pernot (2023) arXiv:2303.07170
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Validation methods for calibration, consistency and adaptivity Average calibration

Variance-based tests of average calibration

Assuming unbiased errors, one should have

Var(E) ~< v >

or, better (as it accounts for the (E;, ug,) pairing)?

Var(Z = E/ug) ~ 1

Average calibration is a necessary condition, but it does not
guarantee consistency nor adaptivity, as it might result
from the compensation of under- and over-estimation of ug.

2Pernot (2022) J. Chem. Phys. 157:144103; Pernot (2023) arXiv:2303.07170
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Validation methods for calibration, consistency and adaptivity Consistency and reliability

Variance-based tests of conditional calibration

@ Reliability of uncertainty at all levels:
Consistency can be expressed as conditional calibration® wrt ug

Var(E|lug = o) = 0?, Yo >0

or
Var(Z|lug = o) =1, Vo >0

o Reliability of uncertainty throughout features space:
Adaptivity is conditional calibration* wrt X

Var(ZIX =x)=1, Vxe X

3Levi et al. (2020) arXiv:1905.11659
*Angelopoulos & Bates (2021) arXiv:2107.07511; Pernot (2023) arXiv:2303.07170
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Vali

for

and ad:

Exploratory plots

Graphical methods

@ plot E (or Z) vs ug and guiding lines y = k x x (if ug # c*)
@ plot Z = E/ug (z-score) vs X and guiding lines y = k

@ plot running quantiles (Clos)

Error, E
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@ An incorrect shape is sufficient to reject calibration, consistency or adaptivity,
but if the plot seems OK, one needs a more quantitative approach.
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Validation methods for calibration, consistency and adaptivity ~ Graphical methods

Binning-based consistency tests®

Reliability diagram / Var(E)=<uE"2> )
7 LZISD analysis / Var(Z) = 1
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@ deviation of a few points, without notable trend, is statistically
expected (error bars are 95% probability intervals)

5Levi et al. (2020) arXiv:1905.11659; Pernot (2022) J. Chem. Phys. 157:144103
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Binning-based adaptivity tests

Vali

methods for

and adaptivity

Graphical methods

Conditional calibration implemented through LZV / LZISD analysis wrt X

Local Z-score Inverse SD
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Validation methods for calibration, consistency and adaptivity Confidence curves

Ranking-based tests

The correlation coefficient between |E| and ug is often reported

@ it is independent on the scales of £ and ug and
does not inform us on calibration

@ because of the probabilistic link between |E| and ug,
one should not expect a strong correlation (> 0.5).

e what is a good value 777

@ large errors should derive from large uncertainties,
but small errors might come from small uncertainties
as well as from large uncertainties

Correlation/rank tests are mostly useless for variance-based UQ metrics
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Validation methods for calibration, consistency and adaptivity Confidence curves

Confidence curves

How does an error statistic (MAE, RMSE....) change when
one removes the errors associated with the largest uncertainties ?

One estimates
cs(k;iE,ug) = S(E | ue < uk)

where
@ S is an error statistic (RMSE, MAE. ..)
@ uy is the largest uncertainty after removal the k % largest uncertainties
from ug (k € {0,1,...,99})
A confidence curve is obtained by plotting cs(k) vs k

@ a monotonically decreasing confidence curve indicates a good association
between large errors and large uncertainties.
It is a good validation test for active learning
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Validation methods for calibration, consistency and adaptivity Confidence curves

Confidence curve references

Conf. curve vs Oracle Conf. curve vs Prob. Ref.
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e —— Data o —— Data

\
\
w S w S
n o | n o
= \ =
"4 \ @
\
g1 8
o N o
S ~
o Tt~ o
o = o
S T T T T S T T T T
0 20 40 60 80 0 20 40 60 80
k% discarded k% discarded

@ for a consistent dataset as the one treated here, one sees that
the oracle is of no help for validation®

SPernot (2022) arXiv:2206.15272
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Applications to recent ML-UQ datasets ML-UQ Methods

Main ML-UQ approaches

e Direct methods’

o Intrinsic methods
@ Gaussian processes, Random Forests, Ridge regression
o Bayesian neural networks, Evidential deep learning®

o Ensemble methods

o Dropout, Query by Commitee, Bootstrap. ..

o A posteriori / post-hoc methods

o Temperature sca/ingg, [sotonic regressionlo, Conformal predictionll. ..

"Tran et al. (2020) Mach. Learn.: Sci. Technol. 1:025006
8Soleimany et al. (2021) ACS Cent. Sci. 7:1356-1367
“Mortensen et al. (2005) Phys. Rev. Lett. 95:216401
Bysk et al. (2022) Mach. Learn.: Sci. Technol. 3:015012
"Huy et al. (2022) Mach. Learn.: Sci. Technol. 3:045028
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Applications to recent ML-UQ datasets

Example PAN2015

Formation heats by the mBEEF method'?

Bayesian Ensembles method
inflates parametric uncertainty
of exchange-correlation model
to ensure average calibration

@ strong functional constraints:
consistency & adaptivity 777

@ does not disambiguate model
uncertainty from reference data

uncertainty
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Error [kcal/mol]

Data -
Quantiles

o
7

0.05

e Set of M =257 {Vi, R, uy.}

2pandey and Jacobsen (2015) Phys. Rev. B (https://tinyurl.com/5dv9spnn), Pernot (2017) J. Chem.
Phys. (https://tinyurl.com/yb6uzwzr), Pernot and Cailliez (2017) AIChE J. (https://tinyurl.com/2xxcfs2f)
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Applications to recent ML-UQ datasets

Example PAN2015

Formation heats by the mBEEF method

LZISD analysis (Consistency)
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@ Var(Z) = 1.3(2), average calibration OK
the LZISD analysis shows that small PUs are underestimated by a factor up to 2,

Average
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while large ones are overestimated by up to 60 %
@ the confidence curve is not monotonously decreasing
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Applications to recent ML-UQ datasets

Bayesian Neural Network

Data issued from a BNN trained to predict a MD potential® (M = 5923)
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@ The color scale for uncertainty is not a proper tool for validation

3H3ise et al. (2019) Chem. Sci. 10:2298

Pascal PERNOT (pascal.pernot@cnrs.fr) (ICP)

Validation of prediction uncertainty in ML

IA Symposium (2023-05-26)

18/29


https://doi.org/10.1039/C8SC04516J
mailto:pascal.pernot@cnrs.fr

Applications to recent ML-UQ datasets Example HAS2019

Bayesian Neural Network

. . Confidence plot
LZISD analysis (Consistency)
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@ This BNN uncertainty is NOT calibrated (Var(Z) = 30)
but might still be used for active learning. ..
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Applications to recent ML-UQ datasets

Example PAL2022

Calibrated bootstrap for impurities diffusion

Data issued from a study on a method to obtain calibrated ML
uncertainties'* (M = 2040)

Before calibration
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@ Calibration seems efficient. . .

“Palmer et al. (2022) npj Comput. Mater. 8:1-9; post-hoc calibration by linear transformation of uncal.

uncertainties
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Applications to recent ML-UQ datasets Example PAL2022

Calibrated bootstrap for impurities diffusion
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@ Average calibration is excellent, but consistency of small uncertainties
is not perfect (up to 50% over-estimation around ug = 0.2 kcal/mol)
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Applications to recent ML-UQ datasets Example PAL2022

Calibrated bootstrap for impurities diffusion
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@ Efficient calibration but no consistency for the smaller 50% of uncertainties;
OK for Active Learning
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Applications to recent ML-UQ datasets

Example BUS2022

Post-hoc calibration of ensemble predictions

Atomization energy on QM9 dataset'® (M = 13885)
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@ Consistency seems OK

0.500

@ Adaptivity seems problematic on “Z vs X" plot
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®Busk et al. (2022) Mach. Learn.: Sci. Technol. 3:015012; post-hoc calibration by non-linear
transformation of uncal. uncertainties (isotonic regression)
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Applications to recent ML-UQ datasets Example BUS2022

Consistency and adaptivity
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@ No major consistency default

@ But notable problem of adaptivity, with systematic deviations
from the y = 1 line. Confirms the diagnostic of the "Z vs X" plot.
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Applications to recent ML-UQ datasets

Confidence curves

Full dataset
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@ The confidence curve tests the consistency of E and uE

@ Consistency might not be fulfilled locally in X space

Pascal PERNOT (pascal.pernot@cnrs.fr) (ICP) Validation of prediction uncertainty in ML

IA Symposium (2023-05-26)

25/29


mailto:pascal.pernot@cnrs.fr

Conclusions

Conclusions

o Calibration/Consistency/Adaptivity
A principled framework for UQ validation

o Calibration is easy, consistency and adaptivity are tough !
o Adaptivity is presently a (dangerous) blind spot in ML-UQ
validation studies.
@ Direct ML-UQ methods do not provide calibrated uncertainty
o might still be good for internal use (active learning)
e strong need for post-hoc calibration methods going
beyond average calibration
@ UQ methods used today in computational chemistry rarely reach
consistency or adaptivity

e how-much mis-calibration is acceptable for a given application ?
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Supplementary Information

Confidence curve references

@ The Oracle is the confidence curve obtained by assuming
a perfect correlation between |E| and ug

O(k) = cs(k:, E,|E[)

e it is unsuitable for variance-based UQ metrics and corresponds
to an unrealistic generative model: E ~ +ug

@ A Probabilistic reference can be built instead

P(k; ug) = <65(k; E, UE)>E
where a Monte Carlo average is taken over samples of

E,’ ~ D(O, UE’.)

@ one can thus test the consistency of E and ug
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Supplementary Information

Consistency tests

Conditional calibration is implementred through binning wrt ug (local calibration)

@ Reliability diagrams or RMSE vs RMV plot'®
@ split ug into bins
@ estimate Var(E) and < u > for each bin
© plot \/Var(E) Vs \/< uz >

@ check for deviations from the identity line

e Local Z-Variance (LZV) or Local Z-Inverse SD (LZISD) plots'’
@ split ug into bins
@ estimate Var(Z = E/ug) for each bin

© plot Var(Z) or 1//Var(Z) at the center of each bin

@ check for deviations from the y = 1 line

@ Note: the diagnostic might depend on the binning strategy.

Bins should be as small as possible without compromising testing power. ..

18| evi et al. (2020) arXiv:1905.11659
"Pernot (2022) J. Chem. Phys. 157:144103
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