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Uncertainty Quantification in Machine Learning Introduction

Why UQ ?

ML models have many parameters and a high risk
to be overly sensitive to small variations of inputs,
notably for out-of-the-box predictions.

Assignment of an uncertainty to each prediction is expected
to flag predictions with outstanding values.

UQ is also a necessity when ML predictions replace
physical experiments (Virtual Measurements).

UQ validation tests the reliability of prediction uncertainty
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Uncertainty Quantification in Machine Learning Introduction

UQ metrics and validation model

UQ validation methods depend on UQ information

full distribution

prediction intervals or expanded uncertainty
(half-range of a probability interval)

uncertainty (variance-based UQ metric)

Prediction uncertainty quantifies the dispersion of errors

Validation is based on a probabilistic model

Ei ∼ D(0, uEi )

where D(µ, σ) is a distribution of errors (a priori unknown) with mean
µ and standard deviation σ and errors should be unbiased (< E >= 0)
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Uncertainty Quantification in Machine Learning Introduction

Notations: UQ validation dataset

Let us consider a typical validation set

Xi : input feature(s) at point i ∈ 1 : M

Vi : predicted value at point i ∈ 1 : M

uVi : uncertainty on Vi (model uncertainty)

Ri : reference value

uRi : uncertainty on Ri (data uncertainty)

From which one gets

Ei = Ri − Vi : [prediction] error

uEi =
√

u2
Vi

+ u2
Ri

(prediction uncertainty)
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Uncertainty Quantification in Machine Learning Introduction

Validation goals

Validation goals depend on the intended use of uncertainty1

Internal use (e.g. active learning)

small uncertainties should imply small errors
calibration is not necessary (need some form of correlation)

External use: prediction uncertainty has to match real world
requirements (e.g. high-throughput screening of materials
that have to be tested experimentally)

uncertainty should be calibrated

Consistency: E and uE should be statistically consistent
Adaptivity: uE should be reliable for all input features X

1Pernot (2022) J. Chem. Phys. 157:144103; Pernot (2023) arXiv:2303.07170
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Validation methods for calibration, consistency and adaptivity Average calibration

Variance-based tests of average calibration

Assuming unbiased errors, one should have

Var(E ) '< u2
E >

or, better (as it accounts for the (Ei , uEi ) pairing)2

Var(Z = E/uE ) ' 1

Average calibration is a necessary condition, but it does not
guarantee consistency nor adaptivity, as it might result
from the compensation of under- and over-estimation of uE .

2Pernot (2022) J. Chem. Phys. 157:144103; Pernot (2023) arXiv:2303.07170
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Validation methods for calibration, consistency and adaptivity Consistency and reliability

Variance-based tests of conditional calibration

Reliability of uncertainty at all levels:
Consistency can be expressed as conditional calibration3 wrt uE

Var(E |uE = σ) = σ2, ∀σ > 0

or
Var(Z |uE = σ) = 1, ∀σ > 0

Reliability of uncertainty throughout features space:
Adaptivity is conditional calibration4 wrt X

Var(Z |X = x) = 1, ∀x ∈ X

3Levi et al. (2020) arXiv:1905.11659
4Angelopoulos & Bates (2021) arXiv:2107.07511; Pernot (2023) arXiv:2303.07170
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Validation methods for calibration, consistency and adaptivity Graphical methods

Exploratory plots

plot E (or Z) vs uE and guiding lines y = k ∗ x (if uE 6= c te)
plot Z = E/uE (z-score) vs X and guiding lines y = k
plot running quantiles (CI95)

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

Consistency (E vs. uE)

Prediction Uncertainty, uE

E
rr

or
, E

Data
Quantiles

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

Adaptivity (Z vs. X)

Input feature, X
Z

−
sc

or
e

Data
Quantiles

An incorrect shape is sufficient to reject calibration, consistency or adaptivity,
but if the plot seems OK, one needs a more quantitative approach.
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Validation methods for calibration, consistency and adaptivity Graphical methods

Binning-based consistency tests5
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deviation of a few points, without notable trend, is statistically
expected (error bars are 95% probability intervals)

5Levi et al. (2020) arXiv:1905.11659; Pernot (2022) J. Chem. Phys. 157:144103
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Validation methods for calibration, consistency and adaptivity Graphical methods

Binning-based adaptivity tests

Conditional calibration implemented through LZV / LZISD analysis wrt X
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Validation methods for calibration, consistency and adaptivity Confidence curves

Ranking-based tests

The correlation coefficient between |E | and uE is often reported

it is independent on the scales of E and uE and
does not inform us on calibration

because of the probabilistic link between |E | and uE ,
one should not expect a strong correlation (> 0.5).

what is a good value ???

large errors should derive from large uncertainties,
but small errors might come from small uncertainties
as well as from large uncertainties

Correlation/rank tests are mostly useless for variance-based UQ metrics
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Validation methods for calibration, consistency and adaptivity Confidence curves

Confidence curves

How does an error statistic (MAE, RMSE. . . .) change when
one removes the errors associated with the largest uncertainties ?

One estimates
cS(k; E , uE ) = S (E | uE < uk)

where

S is an error statistic (RMSE, MAE. . . )

uk is the largest uncertainty after removal the k % largest uncertainties
from uE (k ∈ {0, 1, . . . , 99})

A confidence curve is obtained by plotting cS(k) vs k

a monotonically decreasing confidence curve indicates a good association
between large errors and large uncertainties.
It is a good validation test for active learning
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Validation methods for calibration, consistency and adaptivity Confidence curves

Confidence curve references
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for a consistent dataset as the one treated here, one sees that
the oracle is of no help for validation6

6Pernot (2022) arXiv:2206.15272
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Applications to recent ML-UQ datasets ML-UQ Methods

Main ML-UQ approaches

Direct methods7

Intrinsic methods
Gaussian processes, Random Forests, Ridge regression

Bayesian neural networks, Evidential deep learning8

Ensemble methods
Dropout, Query by Commitee, Bootstrap. . .

A posteriori / post-hoc methods
Temperature scaling9, Isotonic regression10, Conformal prediction11. . .

7Tran et al. (2020) Mach. Learn.: Sci. Technol. 1:025006
8Soleimany et al. (2021) ACS Cent. Sci. 7:1356-1367
9Mortensen et al. (2005) Phys. Rev. Lett. 95:216401
10Busk et al. (2022) Mach. Learn.: Sci. Technol. 3:015012
11Hu et al. (2022) Mach. Learn.: Sci. Technol. 3:045028
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Applications to recent ML-UQ datasets Example PAN2015

Formation heats by the mBEEF method12

Bayesian Ensembles method
inflates parametric uncertainty
of exchange-correlation model
to ensure average calibration

strong functional constraints:
consistency & adaptivity ???

does not disambiguate model
uncertainty from reference data
uncertainty

Set of M = 257 {Vi ,Ri , uVi}
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12Pandey and Jacobsen (2015) Phys. Rev. B (https://tinyurl.com/5dv9spnn), Pernot (2017) J. Chem.
Phys. (https://tinyurl.com/yb6uzwzr), Pernot and Cailliez (2017) AIChE J. (https://tinyurl.com/2xxcfs2f)
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Applications to recent ML-UQ datasets Example PAN2015

Formation heats by the mBEEF method
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Var(Z) = 1.3(2), average calibration OK
the LZISD analysis shows that small PUs are underestimated by a factor up to 2,
while large ones are overestimated by up to 60 %
the confidence curve is not monotonously decreasing
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Applications to recent ML-UQ datasets Example HAS2019

Bayesian Neural Network

Data issued from a BNN trained to predict a MD potential13 (M = 5923)
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The color scale for uncertainty is not a proper tool for validation

13Häse et al. (2019) Chem. Sci. 10:2298
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Applications to recent ML-UQ datasets Example HAS2019

Bayesian Neural Network
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This BNN uncertainty is NOT calibrated (Var(Z) = 30)
but might still be used for active learning. . .
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Applications to recent ML-UQ datasets Example PAL2022

Calibrated bootstrap for impurities diffusion
Data issued from a study on a method to obtain calibrated ML
uncertainties14 (M = 2040)
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Calibration seems efficient. . .
14Palmer et al. (2022) npj Comput. Mater. 8:1-9; post-hoc calibration by linear transformation of uncal.

uncertainties
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Applications to recent ML-UQ datasets Example PAL2022

Calibrated bootstrap for impurities diffusion
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Average calibration is excellent, but consistency of small uncertainties
is not perfect (up to 50% over-estimation around uE = 0.2 kcal/mol)
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Applications to recent ML-UQ datasets Example PAL2022

Calibrated bootstrap for impurities diffusion
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Efficient calibration but no consistency for the smaller 50% of uncertainties;
OK for Active Learning
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Applications to recent ML-UQ datasets Example BUS2022

Post-hoc calibration of ensemble predictions
Atomization energy on QM9 dataset15 (M = 13885)
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Consistency seems OK
Adaptivity seems problematic on “Z vs X” plot

15Busk et al. (2022) Mach. Learn.: Sci. Technol. 3:015012; post-hoc calibration by non-linear
transformation of uncal. uncertainties (isotonic regression)
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Applications to recent ML-UQ datasets Example BUS2022

Consistency and adaptivity
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No major consistency default

But notable problem of adaptivity, with systematic deviations
from the y = 1 line. Confirms the diagnostic of the “Z vs X” plot.
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Applications to recent ML-UQ datasets Example BUS2022

Confidence curves
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The confidence curve tests the consistency of E and uE

Consistency might not be fulfilled locally in X space
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Conclusions

Conclusions

Calibration/Consistency/Adaptivity
A principled framework for UQ validation

Calibration is easy, consistency and adaptivity are tough !

Adaptivity is presently a (dangerous) blind spot in ML-UQ
validation studies.

Direct ML-UQ methods do not provide calibrated uncertainty

might still be good for internal use (active learning)

strong need for post-hoc calibration methods going
beyond average calibration

UQ methods used today in computational chemistry rarely reach
consistency or adaptivity

how-much mis-calibration is acceptable for a given application ?
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Conclusions
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Supplementary Information

Confidence curve references
The Oracle is the confidence curve obtained by assuming
a perfect correlation between |E | and uE

O(k) = cS(k; ,E , |E |)

it is unsuitable for variance-based UQ metrics and corresponds
to an unrealistic generative model: E ∼ ±uE

A Probabilistic reference can be built instead

P(k; uE ) =
〈
cS(k; Ẽ , uE )

〉
Ẽ

where a Monte Carlo average is taken over samples of

Ẽi ∼ D(0, uEi )

one can thus test the consistency of E and uE
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Supplementary Information

Consistency tests

Conditional calibration is implementred through binning wrt uE (local calibration)

Reliability diagrams or RMSE vs RMV plot16
1 split uE into bins
2 estimate Var(E) and < u2

E > for each bin
3 plot

√
Var(E) vs

√
< u2

E >
4 check for deviations from the identity line

Local Z-Variance (LZV) or Local Z-Inverse SD (LZISD) plots17
1 split uE into bins
2 estimate Var(Z = E/uE ) for each bin
3 plot Var(Z) or 1/

√
Var(Z) at the center of each bin

4 check for deviations from the y = 1 line

Note: the diagnostic might depend on the binning strategy.
Bins should be as small as possible without compromising testing power. . .

16Levi et al. (2020) arXiv:1905.11659
17Pernot (2022) J. Chem. Phys. 157:144103
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