Validation of prediction uncertainty in ML

Pascal PERNOT (pascal.pernot@cnrs.fr)

Institut de Chimie Physique, UMR8000, CNRS/Univ. Paris-Saclay

IA Symposium (2023-05-26)

1 Uncertainty Quantification in Machine Learning

- 2 Validation methods for calibration, consistency and adaptivity
- **3** Applications to recent ML-UQ datasets
- 4 Conclusions
- **5** Supplementary Information

Why UQ ?

- ML models have many parameters and a high risk to be overly sensitive to small variations of inputs, notably for out-of-the-box predictions.
- Assignment of an uncertainty to each prediction is expected to flag predictions with outstanding values.
- UQ is also a necessity when ML predictions replace physical experiments (Virtual Measurements).

UQ validation tests the reliability of prediction uncertainty

UQ metrics and validation model

UQ validation methods depend on UQ information

- full distribution
- prediction intervals or expanded uncertainty (half-range of a probability interval)
- uncertainty (variance-based UQ metric)

Prediction uncertainty quantifies the dispersion of errors

Validation is based on a probabilistic model

 $E_i \sim D(0, u_{E_i})$

where $D(\mu, \sigma)$ is a distribution of errors (a priori unknown) with mean μ and standard deviation σ and errors should be unbiased (< E >= 0)

Notations: UQ validation dataset

Let us consider a typical validation set

- X_i : input feature(s) at point $i \in 1 : M$
- V_i : predicted value at point $i \in 1 : M$
- u_{V_i} : uncertainty on V_i (model uncertainty)
- R_i : reference value
- u_{R_i} : uncertainty on R_i (*data* uncertainty)

From which one gets

• $E_i = R_i - V_i$: [prediction] error

•
$$u_{E_i} = \sqrt{u_{V_i}^2 + u_{R_i}^2}$$
 (prediction uncertainty)

Validation goals

Validation goals depend on the intended use of uncertainty¹

- Internal use (e.g. active learning)
 - small uncertainties should imply small errors
 - calibration is not necessary (need some form of correlation)
- External use: prediction uncertainty has to match real world requirements (e.g. high-throughput screening of materials that have to be tested experimentally)
 - uncertainty should be calibrated
 - Consistency: E and u_E should be statistically consistent
 - Adaptivity: u_F should be reliable for all input features X

¹Pernot (2022) J. Chem. Phys. 157:144103; Pernot (2023) arXiv:2303.07170

Variance-based tests of average calibration

Assuming unbiased errors, one should have

 $Var(E) \simeq < u_E^2 >$

or, better (as it accounts for the (E_i, u_{E_i}) pairing)²

 $Var(Z = E/u_E) \simeq 1$

Average calibration is a necessary condition, but it does not guarantee consistency nor adaptivity, as it might result from the compensation of under- and over-estimation of u_E .

²Pernot (2022) J. Chem. Phys. 157:144103; Pernot (2023) arXiv:2303.07170

Pascal PERNOT (pascal.pernot@cnrs.fr) (ICP)

Variance-based tests of conditional calibration

• Reliability of uncertainty at all levels:

Consistency can be expressed as conditional calibration³ wrt u_E

$$Var(E|u_E = \sigma) = \sigma^2, \ \forall \sigma > 0$$

or

$$Var(Z|u_E = \sigma) = 1, \ \forall \sigma > 0$$

• **Reliability of uncertainty throughout features space**: *Adaptivity* is *conditional calibration*⁴ wrt *X*

$$Var(Z|X=x)=1, \ \forall x \in \mathcal{X}$$

³Levi et al. (2020) arXiv:1905.11659

⁴Angelopoulos & Bates (2021) arXiv:2107.07511; Pernot (2023) arXiv:2303.07170

Exploratory plots

- plot E (or Z) vs u_E and guiding lines y = k * x (if $u_E \neq c^{te}$)
- plot $Z = E/u_E$ (z-score) vs X and guiding lines y = k
- plot running quantiles (CI₉₅)

 An incorrect shape is sufficient to reject calibration, consistency or adaptivity, but if the plot seems OK, one needs a more quantitative approach. Validation methods for calibration, consistency and adaptivity G

Graphical methods

Binning-based consistency tests⁵

 deviation of a few points, without notable trend, is statistically expected (error bars are 95% probability intervals)

⁵Levi et al. (2020) arXiv:1905.11659; Pernot (2022) J. Chem. Phys. **157**:144103

Pascal PERNOT (pascal.pernot@cnrs.fr) (ICP)

Binning-based adaptivity tests

Conditional calibration implemented through LZV / LZISD analysis wrt X

Ranking-based tests

The correlation coefficient between |E| and u_E is often reported

- it is independent on the scales of E and u_E and does not inform us on calibration
- because of the probabilistic link between |E| and u_E, one should not expect a strong correlation (> 0.5).
 - what is a good value ???
- large errors should derive from large uncertainties, but small errors might come from small uncertainties as well as from large uncertainties

Correlation/rank tests are mostly useless for variance-based UQ metrics

Confidence curves

How does an error statistic (MAE, RMSE....) change when one removes the errors associated with the largest uncertainties ?

One estimates

$$c_{\mathcal{S}}(k; E, u_E) = \mathcal{S}(E \mid u_E < u_k)$$

where

- S is an error statistic (RMSE, MAE...)
- u_k is the largest uncertainty after removal the k % largest uncertainties from u_E ($k \in \{0, 1, ..., 99\}$)
- A confidence curve is obtained by plotting $c_S(k)$ vs k
 - a monotonically decreasing confidence curve indicates a good association between large errors and large uncertainties.
 It is a good validation test for active learning

Confidence curve references

• for a consistent dataset as the one treated here, one sees that the *oracle* is of no help for validation⁶

⁶Pernot (2022) arXiv:2206.15272

Main ML-UQ approaches

Direct methods⁷

- Intrinsic methods
 - Gaussian processes, Random Forests, Ridge regression
 - Bayesian neural networks, Evidential deep learning⁸
- Ensemble methods
 - Dropout, Query by Committee, Bootstrap...

• A posteriori / post-hoc methods

• Temperature scaling⁹, Isotonic regression¹⁰, Conformal prediction¹¹...

- ¹⁰Busk et al. (2022) Mach. Learn.: Sci. Technol. 3:015012
- ¹¹Hu et al. (2022) Mach. Learn.: Sci. Technol. 3:045028

⁷Tran et al. (2020) Mach. Learn.: Sci. Technol. 1:025006

⁸Soleimany et al. (2021) ACS Cent. Sci. 7:1356-1367

⁹Mortensen et al. (2005) Phys. Rev. Lett. **95**:216401

Formation heats by the mBEEF method¹²

Bayesian Ensembles method inflates *parametric uncertainty* of exchange-correlation model to ensure *average calibration*

- strong functional constraints: consistency & adaptivity ???
- does not disambiguate model uncertainty from reference data uncertainty
- Set of $M = 257 \{V_i, R_i, u_{V_i}\}$

¹²Pandey and Jacobsen (2015) *Phys. Rev. B* (https://tinyurl.com/5dv9spnn), Pernot (2017) *J. Chem. Phys.* (https://tinyurl.com/yb6uzwzr), Pernot and Cailliez (2017) *AIChE J.* (https://tinyurl.com/2xxcfs2f)

Pascal PERNOT (pascal.pernot@cnrs.fr) (ICP)

Formation heats by the mBEEF method

- Var(Z) = 1.3(2), average calibration OK
- $\bullet\,$ the LZISD analysis shows that small PUs are underestimated by a factor up to 2, while large ones are overestimated by up to 60 $\%\,$
- the confidence curve is not monotonously decreasing

Example HAS2019

Bayesian Neural Network

Data issued from a BNN trained to predict a MD potential¹³ (M = 5923)

• The color scale for uncertainty is not a proper tool for validation

Pascal PERNOT (pascal.pernot@cnrs.fr) (ICP)

¹³Häse et al. (2019) Chem. Sci. 10:2298

Bayesian Neural Network

 This BNN uncertainty is NOT calibrated (Var(Z) = 30) but might still be used for active learning...

Calibrated bootstrap for impurities diffusion

Data issued from a study on a method to obtain calibrated ML uncertainties¹⁴ (M = 2040)

• Calibration seems efficient...

¹⁴Palmer *et al.* (2022) *npj Comput. Mater.* **8**:1-9; post-hoc calibration by linear transformation of uncal. uncertainties

Pascal PERNOT (pascal.pernot@cnrs.fr) (ICP)

Calibrated bootstrap for impurities diffusion

 Average calibration is excellent, but consistency of small uncertainties is not perfect (up to 50% over-estimation around u_E = 0.2 kcal/mol)

Calibrated bootstrap for impurities diffusion

 Efficient calibration but no consistency for the smaller 50% of uncertainties; OK for Active Learning

Post-hoc calibration of ensemble predictions

Atomization energy on QM9 dataset¹⁵ (M = 13885)

- Consistency seems OK
- Adaptivity seems problematic on "Z vs X" plot

¹⁵Busk *et al.* (2022) *Mach. Learn.: Sci. Technol.* **3**:015012; post-hoc calibration by non-linear transformation of uncal. uncertainties (isotonic regression)

Pascal PERNOT (pascal.pernot@cnrs.fr) (ICP)

Consistency and adaptivity

- No major consistency default
- But notable problem of adaptivity, with systematic deviations from the *y* = 1 line. Confirms the diagnostic of the "Z vs X" plot.

Pascal PERNOT (pascal.pernot@cnrs.fr) (ICP)

Confidence curves

- The confidence curve tests the *consistency* of *E* and *uE*
- Consistency might not be fulfilled locally in X space

Conclusions

Conclusions

- Calibration/Consistency/Adaptivity A principled framework for UQ validation
 - Calibration is easy, consistency and adaptivity are tough !
 - Adaptivity is presently a (dangerous) blind spot in ML-UQ validation studies.

• Direct ML-UQ methods do not provide calibrated uncertainty

- might still be good for internal use (active learning)
- strong need for post-hoc calibration methods going beyond average calibration

• UQ methods used today in computational chemistry rarely reach consistency or adaptivity

• how-much mis-calibration is acceptable for a given application ?

Warmful thanks to...

- Andreas "Gauss Slayer" SAVIN (LCT, Jussieu) for so many enlightening discussions
- Morgane VACHER (Nantes Université) Jonas BUSK (Technical University of Denmark) and many others for providing me with invaluable datasets
- and YOU, for your attention !

27 / 29

Supplementary Information

Confidence curve references

• The **Oracle** is the confidence curve obtained by assuming a perfect correlation between |E| and u_E

 $O(k) = c_S(k; E, |E|)$

- it is unsuitable for variance-based UQ metrics and corresponds to an unrealistic generative model: $E \sim \pm u_E$
- A Probabilistic reference can be built instead

$$P(k; u_E) = \langle c_S(k; \tilde{E}, u_E) \rangle_{\tilde{E}}$$

where a Monte Carlo average is taken over samples of

 $\widetilde{E}_i \sim D(0, u_{E_i})$

• one can thus test the consistency of E and u_E

Consistency tests

Conditional calibration is implemented through binning wrt u_E (local calibration)

• Reliability diagrams or RMSE vs RMV plot¹⁶

- **1** split u_E into bins
- 2 estimate Var(E) and $< u_E^2 >$ for each bin
- (a) plot $\sqrt{Var(E)}$ vs $\sqrt{\langle u_E^2 \rangle}$
- G check for deviations from the identity line

• Local Z-Variance (LZV) or Local Z-Inverse SD (LZISD) plots¹⁷

- split u_E into bins
- 2 estimate $Var(Z = E/u_E)$ for each bin
- If Var(Z) or $1/\sqrt{Var(Z)}$ at the center of each bin
- check for deviations from the y = 1 line
- Note: the diagnostic might depend on the binning strategy. Bins should be as small as possible without compromising testing power...

¹⁶Levi *et al.* (2020) arXiv:1905.11659

¹⁷Pernot (2022) J. Chem. Phys. 157:144103