Two or three things I am sure about uncertainty

Pascal PERNOT

Institut de Chimie Physique, CNRS & Univ. Paris-Saclay

TUMLA, Rennes (2022-07-06)

- 2 [Uncertainty validation](#page-22-0)
- 3 [Statistical treatment of Model Inadequacy](#page-28-0)
- **[Conclusions](#page-36-0)**

whoami

- **Permanent CNRS researcher** (orcid:0000-0001-8586-6222) [\(https://tinyurl.com/52zbchaz\)](https://tinyurl.com/52zbchaz)
- **Main research topics**
	- Statistics for benchmarking of comput. chemistry methods
	- Uncertainty management in complex chemical models
	- Uncertainty quantification in computational chemistry

Uncertainty vs. probability

Representation of uncertainty

- one can attribute a "degree of confidence" $p(X = x)$ to any possible value *x* of an uncertain quantity *X* 1
- consistency and normalization $\Rightarrow p(X=x)$ follows the laws of probability²

• This approach at the core of the GUM $(3.3.1)^3$

- "measurement uncertainty reflects the lack of knowledge about the true value of a measurand"
- "the corresponding state-of-knowledge is best described by a distribution on the possible values of the measurand"
- The **Maximum Entropy Principle (Maxent)** states that, among all distributions compatible with a state-of-knowledge, on should select the one which minimizes Shannon entropy *H*(*p*).

 1^1 P-S. Laplace (1825) [Essai philosophique sur les probabilités](https://fr.wikisource.org/wiki/Essai_philosophique_sur_les_probabilit%C3%A9s), 5th ed.

²Dupré, Maurice J., Tipler, Frank J. (2009) [Bayesian Analysis](http://projecteuclid.org/download/pdf_1/euclid.ba/1340369856) **3**:599–606

3 **JCGM 100:2008** Evaluation of measurement data – Guide to the expression of uncertainty in measurement. (ISO/IEC Guide 98-3)

Uncertainty vs error⁴

In order to estimate a measurement uncertainty it is assumed that the result of a measurement has been corrected for all recognized significant systematic effects and that every effort has been made to identify such effects.

systematic error

component of measurement error that remains constant or varies in a **predictable** manner

random error

component of measurement error that varies in an **unpredictable** manner

uncertainty

non-negative parameter characterizing the **dispersion** of the quantity values being attributed to a measurand

• often estimated by a standard deviation *u*, or the half-width of a probability interval *U^p*

⁴[Guide to the expression of uncertainty in measurement](https://www.bipm.org/en/publications/guides/gum.html) (GUM), JCGM **100**:2008,[International Vocabulary](https://www.bipm.org/en/publications/guides/) [of Metrology](https://www.bipm.org/en/publications/guides/) (VIM), JCGM **200**:2012

Examples: entropy vs. pdf

To describe several **statistically dependent** variables, one often uses their mean values and a variance-covariance matrix. The pdf is often a multivariate normal.

$$
p(x, y | \mu_{X_1}, \mu_{X_2}, \Sigma) \propto (\det \Sigma)^{-1/2} \exp \left(-\frac{1}{2} E^T \Sigma^{-1} E\right)
$$

$$
\boldsymbol{E} = \left(\begin{array}{c} x_1 - \mu_{X_1} \\ x_2 - \mu_{X_2} \end{array} \right); \ \boldsymbol{\Sigma} = \left(\begin{array}{cc} u_{X_1}^2 & u_{X_1 X_2}^2 \\ u_{X_2 X_1}^2 & u_{X_2 X_2}^2 \end{array} \right) = \boldsymbol{S}^T \boldsymbol{R} \boldsymbol{S}
$$

with

$$
\boldsymbol{S} = \left(\begin{array}{c} u_{X_1} \\ u_{X_2} \end{array}\right); \, \boldsymbol{R} = \left(\begin{array}{cc} 1 & \rho \\ \rho & 1 \end{array}\right)
$$

 \bullet Σ is the variance-covariance matrix

• R is the correlation matrix $(-1 \leq \rho \leq 1)$

Sum-constraints

The case of conservation laws

 N variables such as $\sum_{i=1}^{N} X_i = 1$ et $\{X_i \geq 0; \, i = 1, N\}$, one uses Dirichlet's law (Maxent)

{*X*1*, . . . , X^N* } ∼ *Diri*(*γ* ∗ (*µ*1*, . . . , µ^N*))

where *γ >* 0 is a precision factor (variance increases as *γ* decreases)

examples: chemical compositions, branching ratios⁵...

⁵Plessis et al. (2010) [J. Chem. Phys.](http://dx.doi.org/10.1063/1.3479907) **133**:134110

Dirichlet pdf

Diri(3 * (1/3,1/3,1/3))

Quantifying uncertainty on rate constants

• chemical equations based on empirical parameters

 $A + B \longrightarrow C + D$; $k_{AB}(T, P, M)$

$$
\frac{da(t)}{dt} = -k_{AB}(T, P, M) a(t) b(t)
$$

- reaction rates from experiments
	- \longrightarrow with \lceil [very] large] uncertainty
	- \longrightarrow numerous estimated parameters

 \rightarrow in Titan's chemistry models, less than 10% of rate constants have been measured in representative (T, P, M) conditions...

−→ **modelers need extrapolation (with uncertainty !)**

Arrhenius rate analysis (for extrapolation)

Data

$$
\{T_i, k_i, u_{k_i}\}_{i=1}^N
$$

Linear regression

$$
\ln k_i = \ln k_0 - E/T_i
$$

$$
y = a + bx
$$

with $x = -1/T$ and uncertainties $u_{y_i} = u_{k_i}/k_i$ corresponding to the log-transformation of the rate constants

Uncertainty propagation

$$
u_{\ln k}(T) = \left(u_a^2 - \frac{2}{T} u_a u_b \rho_{ab} + \frac{1}{T^2} u_b^2\right)^{1/2}
$$

$$
F_k(T) = \exp(u_{\ln k}(T))
$$

Example: $N(^{2}D) + C_{2}H_{4}$

Sato et al. (1999) Phys. Chem. A **103**:8650–8656

^a Error represents one standard deviation.

⁶E. Hébrard et al., J. Phys. Chem. A 113:11227-11237 (2009)

Pascal PERNOT (ICP) [Two or three things I am sure about uncertainty](#page-0-0) TUMLA, Rennes (2022-07-06) 13/37

⁷E. Hébrard et al., J. Phys. Chem. A 113:11227-11237 (2009)

Pascal PERNOT (ICP) [Two or three things I am sure about uncertainty](#page-0-0) TUMLA, Rennes (2022-07-06) 14/37

- l realized later that the $\chi^2 \propto < R^2/u^2>$ value for our best fit was $\textbf{too small},$ meaning that the *ui*s were too large to explain the fit residuals
	- it is plausible that *systematic errors* were aggregated into Sato's uncertainties
- Considering the presence of an unknown constant offset *ξ*, the statistical model becomes

 $y_i = a + bx_i + \epsilon_i + \xi$; $i = 1, N$

with $E(\epsilon_i) = E(\xi) = 0$ and, noting $Var(\xi) = \sigma_o^2$.

The data are now correlated, with

$$
cov(y_i, y_j) = cov(\epsilon_i + \xi, \epsilon_j + \xi) = (u_{y_i}^2 - \sigma_o^2)\delta_{ij} + \sigma_o^2
$$

 $+$ new fit, with parameters *a*, *b* and σ _o (use Bayesian data analysis)

⁸Nagy et al. (2012) [Rel. Eng. Sys. Saf.](http://doi.org/10.1016/j.ress.2011.06.009) **107**:29–34 (2012)

Structural correlations - Multi-pathway reactlC ρ ons univer

• rate constants (k) and branching ratios (b_i) (BR) measured in different experiments

$$
I^{+} + e^{-} \xrightarrow{k_1 \pm u_{k_1}} M_1
$$

\n
$$
I^{+} + e^{-} \xrightarrow{k_2 \pm u_{k_2}} M_2
$$

\n
$$
I^{+} + e^{-} \xrightarrow{k_3 \pm u_{k_3}} M_3
$$

\n
$$
I^{+} + e^{-} \xrightarrow{k \pm u_{k}} \begin{cases} \frac{b_1 \pm u_{b_1}}{b_2 \pm u_{b_2}} M_1 \\ \frac{b_2 \pm u_{b_3}}{b_3 \pm u_{b_3}} M_2 \\ \frac{b_3 \pm u_{b_3}}{b_3} M_3 \end{cases}
$$

Golden Rule of UP: **Do not mix separate uncertainty sources!**

- \bullet essential for sum-to-one b_i
- \bullet large impact on uncertainty and sensitivity analysis⁹

⁹Carrasco et al. (2007) J. Phys. Chem. A 111:3507

Effect of ignoring sum-to-one correlation

$$
I_1 + M_1 \longrightarrow P_1; k_1, b_1
$$

$$
I_1 + M_1 \longrightarrow P_2; k_1, b_2
$$

$$
I_1 + M_2 \longrightarrow P_3; k_2
$$

with $u(k_1) = u(k_2) = 0$ and $b_1 + b_2 = 1$

Application to dissociative recombination

The case of HCCCNH⁺

- \bullet Geppert et al. [(2004) ApJ 613:1302-1309] measurements for DCCCND⁺
	- $B_1 = 0.52 \pm 0.05$ for $\{DC_3N + D; C_3N + D_2\}$
	- $B_2 = 0.48 \pm 0.05$ for $\{DCN + C_2D; CN + C_2D_2\}$
- ² isotope effects expected to be small: we can transpose information to HCCCNH⁺
- **3** Osamura et al. [(1999) ApJ 519:697-704]
	- interconversion barriers low enough for isomerisation of HC_3N
	- formation of HC_3N more likely than HC_2NC
- **4** HCN / HNC

Application to dissociative recombination

Resulting probabilistic tree

Application to dissociative recombination

Implementation in MC-ChemDB¹⁰

¹⁰[\(https://github.com/ppernot/MC-ChemDB\)](https://github.com/ppernot/MC-ChemDB); Plessis et al. (2010) [J. Chem. Phys.](http://doi.org/10.1063/1.3479907) **133**:134110

Computational chemistry UQ

- Several methods in 'traditional' CC try to provide prediction uncertainty (Composite methods, Bayesian Ensembles DFT, Statistical corrections. . .)
	- inexistent to disparate validation methods
- Surge of uncertainty validation needs from Machine Learning (for prediction, or for Active Learning)
	- several validation methods with unclear application limits (interval-based, variance-based, ranking-based) 11
- The Calibration/Tightness framework provides a principled validation approach 12

 11 Scalia et al. (2020) J. Chem. Inf. Model. [\(https://tinyurl.com/yc7rn7dp\)](https://tinyurl.com/yc7rn7dp) ¹² Gneiting et al. (2007) Stat. Meth. B [\(https://tinyurl.com/2p8nr3ab\)](https://tinyurl.com/2p8nr3ab); Pernot (2022) J. Chem. Phys. [\(https://tinyurl.com/bdfy8snx\)](https://tinyurl.com/bdfy8snx); Pernot (2022) [\(https://arxiv.org/abs/2204.13477\)](https://arxiv.org/abs/2204.13477)

Calibration / Tightness

Test the statistical compatibility between uncertainties and errors, i.e.

 $E_i \sim D(\mu = 0, \sigma = u_{E_i})$

where *D* is (often) an unknown distribution.

(Average) calibration (assuming *< E >*= 0)

 $Var(E) = \langle u_E^2 \rangle$, or better, $Var(E/u_E) = 1$

Tightness (small-scale or local calibration):

$$
\text{Var}\left(E|u_E^2 = \sigma^2\right) = \sigma^2, \forall \sigma^2
$$

¹³ Pandey and Jacobsen (2015) Phys. Rev. B [\(https://tinyurl.com/5dv9spnn\)](https://tinyurl.com/5dv9spnn), Pernot (2017) J. Chem.

Pascal PERNOT (ICP) [Two or three things I am sure about uncertainty](#page-0-0) TUMLA, Rennes (2022-07-06) 25 / 37

Formation heats by the mBEEF method¹³

- **Bayesian Ensembles method** inflates parametric uncertainty of exchange-correlation model to cover errors amplitude
	- strong functional constraints: tightness ???
	- does not disambiguate model uncertainty from reference data uncertainty
- Set of $M = 257 \{V_i, R_i, u_{V_i}\}$

Data **Quantile**

[Uncertainty validation](#page-22-0) [Example](#page-24-0)

Formation heats by the mBEEF method

- $Var(Z) = 1.3(2)$, average calibration OK
- Tightness is bad: the LZV analysis shows that small PUs are underestimated, while large ones are overestimated
- The confidence curve is catastrophic (cannot use for Active Learning) \bullet

Query by Commitee UQ

QbC uncertainties (*n* = 8**) on formation enthalpies for AIQM1 and ANI-1ccx**¹⁴. Set of $M = 472 \{E_i, u_{V_i}\}$

¹⁴Zheng et al. (2022) J. Phys. Chem. Lett. [\(https://tinyurl.com/ccefk79z\)](https://tinyurl.com/ccefk79z)

Query by Commitee UQ

- QbC does not provide a prediction uncertainty
- \bullet but both methods point reliably to largest errors $(good for active learning!)$
Pascal PERNOT (ICP)

Measurement model

$$
y_i = M(x_i; \boldsymbol{\vartheta}) + \epsilon_i
$$

$$
\bullet \ \ N_{\vartheta} < N \ (N \text{ data points})
$$

inadequacy: no intersection between the model manifold (MM) and a high probability hypersphere around the data (D)

¹⁵Transtrum et al. (2011) [Phys. Rev. E](https://doi.org/10.1103/PhysRevE.83.036701) **83**:036701

y,

- **Measurement model**
	- $y_i = \alpha * M(x_i; \boldsymbol{\vartheta}) + \delta(x_i; \boldsymbol{\tau}) + \epsilon_i$
		- *δ*(*xi*; *τ*) deterministic (shift) or stochastic (GP, ML. . .)

Problems

- parameters identifiability
- α et $\delta(x_i; \tau)$ not transferable

¹⁶Kennedy, M.C. & O'Hagan, A. (2001) [J. R. Stat. Soc. B](http://doi.org/10.1111/1467-9868.00294) **63**:425.

Pascal PERNOT (ICP) [Two or three things I am sure about uncertainty](#page-0-0) TUMLA, Rennes (2022-07-06) 30 / 37

External stochastic correction¹⁷

Measurement model

 $y_i = M(x_i; \boldsymbol{\vartheta}) + \delta + \epsilon_i$ $δ \sim N(0, σ)$

Problem

non-transferability of correction model

 y_1

¹⁷P. Pernot et al. (2015) [J. Phys. Chem. A](http://doi.org/10.1021/jp509980w) **119**:5288-5304; Lejaeghere et al. (2014) [Crit. Rev. Sol.](http://doi.org/10.1080/10408436.2013.772503) [St. Mat. Sci.](http://doi.org/10.1080/10408436.2013.772503) **39**:1-24

Stochastic embedding 18

Measurement model

 $y_i = M\left[x_i; \boldsymbol{\vartheta} + \delta(\boldsymbol{\vartheta})\right] + \epsilon_i$ $\delta \sim N(0, \Sigma_{\theta})$

- the model parameters become stochastic variables, with a covariance matrix Σ*^θ* adapted for model predictions to **marginally** overlap with the data
- **•** transferability of Σ_θ possible, but is it pertinent ???

¹⁸Sargsyan, K. et al. (2015) [Int. J. Chem. Kinet.](http://doi.org/10.1002/kin.20906) **47**:246; Pernot and Cailliez (2017) [AIChE J.](http://doi.org/10.1002/aic.15781) **63**[:4642-4665;](http://doi.org/10.1002/aic.15781) Pernot (2017) [J. Chem. Phys.](http://doi.org/10.1063/1.4994654) **147**:104102; Sargsyan, K. et al. (2018) arXiv[:1801.06768](http://arxiv.org/abs/1801.06768)

Linear Calibration

The valid case

- N triplets $\{x_i, y_i, u_{y_i}\}$
- **•** Measurement model (WLS)

 $y_i = a + bx_i + \epsilon_i$ $\epsilon_i \sim N(0, u_{y_i})$

• Confidence and prediction uncertainties at new point *x*∗

$$
y_* = \hat{a} + \hat{b}x_*
$$

\n
$$
u_c^2(y_*) = u_a^2 + (u_b x_*)^2 + 2u_a u_b \rho_{ab} x_*
$$

\n
$$
u_p^2(y_*) = u_c^2(y_*) + \langle u_y^2 \rangle
$$

• Note.
$$
u_c^2(y_*) \longrightarrow 0
$$
 as $N \longrightarrow \infty$ and/or $u_y \longrightarrow 0$

Failure of standard calibration

Model inadequacy

- **•** Same data, with smaller u_{y_i}
- **•** Same measurement model
- **•** The measurement model is inadequate and stastically invalid *RMSD >> < uyⁱ >*

For inadequate models, one cannot make predictions using the standard calibration setup

Alternative models: Statistical Correction **CNIS** univers

• New measurement model

$$
y_i = a + bx_i + \delta + \epsilon_i
$$

$$
\epsilon_i \sim N(0, u_{y_i})
$$

$$
\delta \sim N(0, \sigma)
$$

tė

Parameters: *a*, *b* and *σ*

Confidence and prediction intervals at new point *x*∗

$$
y_* = \hat{a} + \hat{b}x_*
$$

\n
$$
u_c^2(y_*) = u_a^2 + (u_b x_*)^2 + 2u_a u_b \rho_{ab} x_*
$$

\n
$$
+ \sigma^2
$$

\n
$$
u_p^2(y_*) = u_c^2(y_*) + \langle u_y^2 \rangle
$$

Problem: non-transferability of *σ*

Alternative models: Stochastic embedding¹⁹ $\mathrm{i} \mathcal{C} \rho$ or μ *v*ersitė

• Standard measurement model with **scaled parameters covariance matrix**

$$
u_c'^2(y_*) = T * [u_a^2 + (u_b x_*)^2 + 2u_a u_b \rho_{ab} x_*]
$$

i.e.,

$$
\Sigma'_{\vartheta} = T * \Sigma_{\vartheta}
$$
 with T such as $< u_c'^2(y_*) > \simeq \text{Var}(R)$

- $\mathsf{Advantage:}$ transferability of Σ^\prime_ϑ $(?)$
- **Problems**
	- confidence intervals geometry is determined by model's jacobian
	- uncontrolled risk of local under/overestimation

¹⁹Pernot and Cailliez (2017) AIChE J. **63**[:4642-4665;](http://doi.org/10.1002/aic.15781) Pernot (2017) [J. Chem. Phys.](http://doi.org/10.1063/1.4994654) **147**:104102

Conclusions

- Probabilistic uncertainty representation
	- use adapted pdfs that implement all physical constraints
	- **Correlation is your friend !**
- **•** Uncertainty validation
	- **Calibration is easy, tightness is hard !**
	- Check calibration and tightness with appropriate methods
- Uncertainty estimation with inadequate models
	- Validate the statistical model
	- **Simplest ideas are not necessarily the best ones !**