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Uncertainty representation Preliminaries

Uncertainty vs. probability

Representation of uncertainty
one can attribute a “degree of confidence” p(X = x)
to any possible value x of an uncertain quantity X1

consistency and normalization ⇒ p(X = x) follows the laws of probability2

This approach at the core of the GUM (3.3.1)3

“measurement uncertainty reflects the lack of knowledge
about the true value of a measurand”

“the corresponding state-of-knowledge is best described by
a distribution on the possible values of the measurand”

The Maximum Entropy Principle (Maxent) states that, among all
distributions compatible with a state-of-knowledge, on should select the one
which minimizes Shannon entropy H(p).

1P-S. Laplace (1825) Essai philosophique sur les probabilités, 5th ed.
2Dupré, Maurice J., Tipler, Frank J. (2009) Bayesian Analysis 3:599–606
3JCGM 100:2008 Evaluation of measurement data – Guide to the expression of uncertainty in

measurement. (ISO/IEC Guide 98-3)
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Uncertainty representation Preliminaries

Uncertainty vs error4

In order to estimate a measurement uncertainty it is assumed that
the result of a measurement has been corrected for all recognized
significant systematic effects and that every effort has been made to
identify such effects.

systematic error

component of measurement error
that remains constant or varies
in a predictable manner

random error

component of measurement error
that varies in an unpredictable manner

uncertainty

non-negative parameter characterizing
the dispersion of the quantity values being
attributed to a measurand

often estimated by a standard
deviation u, or the half-width of a
probability interval Up

4Guide to the expression of uncertainty in measurement (GUM), JCGM 100:2008,International Vocabulary
of Metrology (VIM), JCGM 200:2012
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Uncertainty representation Preliminaries

Examples: entropy vs. pdf
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Uncertainty representation Preliminaries

Multivariate pdfs

To describe several statistically dependent variables, one often uses their mean values
and a variance-covariance matrix. The pdf is often a multivariate normal.

p(x, y|µX1 , µX2 ,ΣΣΣ) ∝ (detΣΣΣ)−1/2 exp
(
−1

2E
EETΣΣΣ−1EEE

)
EEE =

(
x1 − µX1

x2 − µX2

)
; ΣΣΣ =

(
u2

X1 u2
X1X2

u2
X2X1 u2

X2

)
= SSSTRRRSSS

with
SSS =

(
uX1

uX2

)
; RRR =

(
1 ρ
ρ 1

)

ΣΣΣ is the variance-covariance matrix
RRR is the correlation matrix (−1 ≤ ρ ≤ 1)
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Uncertainty representation Preliminaries

Sum-constraints

The case of conservation laws

N variables such as
∑N
i=1Xi = 1 et {Xi ≥ 0; i = 1, N} ,

one uses Dirichlet’s law (Maxent)

{X1, . . . , XN} ∼ Diri (γ ∗ (µ1, . . . , µN ))

where γ > 0 is a precision factor
(variance increases as γ decreases)

examples: chemical compositions, branching ratios5. . .

5Plessis et al. (2010) J. Chem. Phys. 133:134110
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Uncertainty representation Preliminaries

Dirichlet pdf
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Uncertainty representation Applications

Quantifying uncertainty on rate constants

chemical equations based on empirical parameters

A+B −→ C +D ; kAB(T, P,M)

da(t)
dt

= −kAB(T, P,M) a(t) b(t)

reaction rates from experiments
−→ with [ [very] large ] uncertainty
−→ numerous estimated parameters
−→ in Titan’s chemistry models, less than 10% of rate constants
have been measured in representative (T,P,M) conditions. . .

−→ modelers need extrapolation (with uncertainty !)
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Uncertainty representation Applications

Arrhenius rate analysis (for extrapolation)
Data

{Ti, ki, uki
}Ni=1

Linear regression

ln ki = ln k0 − E/Ti
y = a+ bx

with x = −1/T and uncertainties uyi
= uki

/ki corresponding to the
log-transformation of the rate constants

Uncertainty propagation

uln k(T ) =
(
u2
a −

2
T
uaubρab + 1

T 2u
2
b

)1/2

Fk(T ) = exp (uln k(T ))
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Uncertainty representation Applications

Example: N(2D) + C2H4

Sato et al. (1999) Phys. Chem. A 103:8650–8656
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Uncertainty representation Applications

Extrapolation uncertainty vs. correlations6

lnA Ea/R (K) ρ

Sato et al. (1999) −22.193± 0.13 503± 50 N/A
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6E. Hébrard et al., J. Phys. Chem. A 113:11227-11237 (2009)
Pascal PERNOT (ICP) Two or three things I am sure about uncertainty TUMLA, Rennes (2022-07-06) 13 / 37



Uncertainty representation Applications

Extrapolation uncertainty vs. correlations7

lnA Ea/R (K) ρ

Hebrard et al. (2009) −22.193± 0.66 503± 170 0.996
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7E. Hébrard et al., J. Phys. Chem. A 113:11227-11237 (2009)
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Uncertainty representation Applications

Extrapolation uncertainty vs. correlations

I realized later that the χ2 ∝< R2/u2 > value for our best fit was too small,
meaning that the uis were too large to explain the fit residuals

it is plausible that systematic errors were aggregated into Sato’s uncertainties

Considering the presence of an unknown constant offset ξ, the statistical
model becomes

yi = a+ bxi + εi + ξ; i = 1, N

with E(εi) = E(ξ) = 0 and, noting V ar(ξ) = σ2
o .

The data are now correlated, with

cov(yi, yj) = cov(εi + ξ, εj + ξ) = (u2
yi
− σ2

o)δij + σ2
o

+ new fit, with parameters a, b and σo (use Bayesian data analysis)
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Uncertainty representation Applications

Extrapolation uncertainty vs. correlations

lnA Ea/R (K) ρ ρsys

Pernot (later) −22.16± 0.39 530± 117 0.967 0.7
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Uncertainty representation Applications

Extrapolation uncertainty vs. correlations

lnA Ea/R (K) ρ

Variance Fitting8 n/a± 0.46 n/a± 131 0.971
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8Nagy et al. (2012) Rel. Eng. Sys. Saf. 107:29–34 (2012)
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Uncertainty representation Applications

Structural correlations - Multi-pathway reactions

rate constants (k) and branching ratios (bi) (BR) measured in different
experiments

I+ + e−
k1±uk1−−−−−→ M1

I+ + e−
k2±uk2−−−−−→ M2

I+ + e−
k3±uk3−−−−−→ M3

I+ + e− k±uk−−−→


b1±ub1−−−−−→ M1
b2±ub2−−−−−→ M2;

∑
bi = 1

b3±ub3−−−−−→ M3

Golden Rule of UP: Do not mix separate uncertainty sources!
essential for sum-to-one bi

large impact on uncertainty and sensitivity analysis9

9Carrasco et al. (2007) J. Phys. Chem. A 111:3507
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Uncertainty representation Applications

Effect of ignoring sum-to-one correlation

I1 +M1 −→ P1 ; k1, b1
I1 +M1 −→ P2 ; k1, b2
I1 +M2 −→ P3 ; k2

with u(k1) = u(k2) = 0 and b1 + b2 = 1

k11 = k1 ∗ b1, k12 = k1 ∗ b2 {k11, k12} = k1 ∗ {b1, b2}Σ=1
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Uncertainty representation Applications

Application to dissociative recombination

The case of HCCCNH+

1 Geppert et al. [(2004) ApJ 613:1302-1309] measurements for DCCCND+

B1 = 0.52± 0.05 for {DC3N + D; C3N + D2}

B2 = 0.48± 0.05 for {DCN +C2D; CN + C2D2}

2 isotope effects expected to be small: we can transpose information to
HCCCNH+

3 Osamura et al. [(1999) ApJ 519:697-704]

– interconversion barriers low enough for isomerisation of HC3N

– formation of HC3N more likely than HC2NC
4 HCN / HNC
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Uncertainty representation Applications

Application to dissociative recombination

Resulting probabilistic tree

HCCCNH+ + e− −→



B1=0.52±0.05
−−−−−−−−−−→


B11∈[0,1]
−−−−−−−→


B111∈[0,1]
−−−−−−−→

{
B1111∈[0,1]
−−−−−−−−→ HC3N + H
B1112∈[0,1]
−−−−−−−−→ C3NH + H

B112≤B111−−−−−−−−→

{
B1121∈[0,1]
−−−−−−−−→ C2NCH + H
B1122∈[0,1]
−−−−−−−−→ HC2NC + H

B12∈[0,1]
−−−−−−−→ C3N + H2

B2=0.48±0.05
−−−−−−−−−−→


B21∈[0,1]
−−−−−−−→

{
B211∈[0,1]
−−−−−−−→ HCN + C2H
B212∈[0,1]
−−−−−−−→ HNC + C2H

B22∈[0,1]
−−−−−−−→ CN + C2H2
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Uncertainty representation Applications

Application to dissociative recombination

Implementation in MC-ChemDB10

10(https://github.com/ppernot/MC-ChemDB); Plessis et al. (2010) J. Chem. Phys. 133:134110
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Uncertainty validation Concepts

Computational chemistry UQ

Several methods in ‘traditional’ CC try to provide prediction uncertainty
(Composite methods, Bayesian Ensembles DFT, Statistical corrections. . . )

inexistent to disparate validation methods

Surge of uncertainty validation needs from Machine Learning
(for prediction, or for Active Learning)

several validation methods with unclear application limits (interval-based,
variance-based, ranking-based)11

The Calibration/Tightness framework provides a principled validation
approach12

11Scalia et al. (2020) J . Chem. Inf. Model. (https://tinyurl.com/yc7rn7dp)
12Gneiting et al. (2007) Stat. Meth. B (https://tinyurl.com/2p8nr3ab); Pernot (2022) J. Chem. Phys.

(https://tinyurl.com/bdfy8snx); Pernot (2022) (https://arxiv.org/abs/2204.13477)
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Uncertainty validation Concepts

Calibration / Tightness

Test the statistical compatibility between uncertainties and errors, i.e.

Ei ∼ D(µ = 0, σ = uEi
)

where D is (often) an unknown distribution.

(Average) calibration (assuming < E >= 0)

V ar(E) =< u2
E >, or better, V ar(E/uE) = 1

Tightness (small-scale or local calibration):

Var
(
E|u2

E = σ2) = σ2, ∀σ2
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Uncertainty validation Example

Formation heats by the mBEEF method13

Bayesian Ensembles method
inflates parametric uncertainty of
exchange-correlation model to
cover errors amplitude

strong functional constraints:
tightness ???

does not disambiguate model
uncertainty from reference data
uncertainty

Set of M = 257 {Vi, Ri, uVi
}
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13Pandey and Jacobsen (2015) Phys. Rev. B (https://tinyurl.com/5dv9spnn), Pernot (2017) J. Chem.
Phys. (https://tinyurl.com/yb6uzwzr), Pernot and Cailliez (2017) AIChE J. (https://tinyurl.com/2xxcfs2f)
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Uncertainty validation Example

Formation heats by the mBEEF method
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Var(Z) = 1.3(2), average calibration OK
Tightness is bad: the LZV analysis shows that small PUs are underestimated,
while large ones are overestimated
The confidence curve is catastrophic (cannot use for Active Learning)
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Uncertainty validation ZHE2022

Query by Commitee UQ

QbC uncertainties (n = 8) on formation enthalpies for AIQM1 and
ANI-1ccx14. Set of M = 472 {Ei, uVi

}
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14Zheng et al. (2022) J. Phys. Chem. Lett. (https://tinyurl.com/ccefk79z)
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Uncertainty validation ZHE2022

Query by Commitee UQ
Stat AIQM1 ANI-1ccx Target
V ar(Z) 59 4.3 1.4
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QbC does not provide a prediction uncertainty
but both methods point reliably to largest errors
(good for active learning !)
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Statistical treatment of Model Inadequacy Principles

Data space representation of model errors15

Measurement model

yi = M(xi;ϑ) + εi

Nϑ < N (N data points)

inadequacy: no intersection
between the model manifold (MM)
and a high probability hypersphere
around the data (D)

15Transtrum et al. (2011) Phys. Rev. E 83:036701
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Statistical treatment of Model Inadequacy Principles

Correction by model discrepancy function16

Measurement model

yi = α ∗M(xi;ϑ) + δ(xi; τ ) + εi

δ(xi; τ ) deterministic (shift) or
stochastic (GP, ML. . . )

Problems
parameters identifiability
α et δ(xi; τ ) not transferable

16Kennedy, M.C. & O’Hagan, A. (2001) J. R. Stat. Soc. B 63:425.
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Statistical treatment of Model Inadequacy Principles

External stochastic correction17

Measurement model

yi = M(xi;ϑ) + δ + εi

δ ∼ N(0, σ)

Problem
non-transferability of correction
model

17P. Pernot et al. (2015) J. Phys. Chem. A 119:5288-5304; Lejaeghere et al. (2014) Crit. Rev. Sol.
St. Mat. Sci. 39:1-24
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Statistical treatment of Model Inadequacy Principles

Stochastic embedding18

Measurement model

yi = M [xi;ϑ+ δ(ϑ)] + εi

δ ∼ N(0,Σθ)

the model parameters become
stochastic variables, with a
covariance matrix Σθ adapted for
model predictions to marginally
overlap with the data

transferability of Σθ possible, but is
it pertinent ???

18Sargsyan, K. et al. (2015) Int. J. Chem. Kinet. 47:246; Pernot and Cailliez (2017) AIChE J.
63:4642-4665; Pernot (2017) J. Chem. Phys. 147:104102; Sargsyan, K. et al. (2018) arXiv:1801.06768
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Statistical treatment of Model Inadequacy Example

Linear Calibration

The valid case
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N triplets {xi, yi, uyi}
Measurement model (WLS)

yi = a+ bxi + εi

εi ∼ N(0, uyi )

Confidence and prediction uncertainties
at new point x∗

y∗ = â+ b̂x∗

u2
c(y∗) = u2

a + (ubx∗)2 + 2uaubρabx∗

u2
p(y∗) = u2

c(y∗)+ < u2
y >

Note. u2
c(y∗) −→ 0 as N −→∞

and/or uy −→ 0
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Statistical treatment of Model Inadequacy Example

Failure of standard calibration

Model inadequacy
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Same data, with smaller uyi

Same measurement model

The measurement model is inadequate
and stastically invalid
RMSD >> < uyi >

For inadequate models, one cannot make
predictions using the standard calibration
setup
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Statistical treatment of Model Inadequacy Example

Alternative models: Statistical Correction
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New measurement model
yi = a+ bxi + δ + εi

εi ∼ N(0, uyi )
δ ∼ N(0, σ)

Parameters: a, b and σ

Confidence and prediction intervals at
new point x∗

y∗ =â+ b̂x∗

u2
c(y∗) = u2

a + (ubx∗)2 + 2uaubρabx∗

+ σ2

u2
p(y∗) = u2

c(y∗)+ < u2
y >

Problem: non-transferability of σ
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Statistical treatment of Model Inadequacy Example

Alternative models: Stochastic embedding19
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Standard measurement model with
scaled parameters covariance matrix

u′2c (y∗) = T ∗ [u2
a + (ubx∗)2

+ 2uaubρabx∗]

i.e.,

Σ′ϑ = T ∗ Σϑ

with T such as < u′2c (y∗) >' Var(R)

Advantage: transferability of Σ′ϑ (?)

Problems
confidence intervals geometry is
determined by model’s jacobian
uncontrolled risk of local
under/overestimation

19Pernot and Cailliez (2017) AIChE J. 63:4642-4665; Pernot (2017) J. Chem. Phys. 147:104102
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Conclusions

Conclusions

Probabilistic uncertainty representation
use adapted pdfs that implement all physical constraints

Correlation is your friend !

Uncertainty validation
Calibration is easy, tightness is hard !

Check calibration and tightness with appropriate methods

Uncertainty estimation with inadequate models
Validate the statistical model

Simplest ideas are not necessarily the best ones !

Pascal PERNOT (ICP) Two or three things I am sure about uncertainty TUMLA, Rennes (2022-07-06) 37 / 37


	Uncertainty representation
	Preliminaries
	Applications

	Uncertainty validation
	Concepts
	Example
	ZHE2022

	Statistical treatment of Model Inadequacy
	Principles
	Example

	Conclusions

