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Uncertainty estimation in computational chemistry Introduction

CC-UQ validation practices

Qualitative appreciation of conformity between PU and errors amplitude
visual check of normality of z-scores histogram1

visual estimation of local coverage of 95% prediction interval (PI)2

Statistical estimation
coverage of 95% prediction intervals3
correlation of uncertainty and absolute errors4
calibration/sharpness (for CC-applied ML methods)5

We need a consistent and shared validation framework !

1Mortensen et al. (2005) Phys. Rev. Lett. (https://tinyurl.com/mvwk3fff)
2Bakowies and von Lilienfeld (2021) JCTC (https://tinyurl.com/ms3dy7yv)
3Pernot et al. (2015) J. Chem. Phys. (https://tinyurl.com/3c9aw28r), Proppe & Kircher (2022)

ChemPhysChem (https://tinyurl.com/yckxvjkk)
4Zheng et al. (2022) J. Phys. Chem. Lett. (https://tinyurl.com/ccefk79z)
5Tran et al. (2020) Mach. Learn.: Sci. Technol (https://tinyurl.com/2p849fs6), Scalia et al. (2020) J .

Chem. Inf. Model. (https://tinyurl.com/yc7rn7dp)
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Uncertainty estimation in computational chemistry Introduction

Uncertainty vs error6

In order to estimate a measurement uncertainty it is assumed that
the result of a measurement has been corrected for all recognized
significant systematic effects and that every effort has been made to
identify such effects.

systematic error

component of measurement error
that remains constant or varies
in a predictable manner

random error

component of measurement error
that varies in an unpredictable manner

uncertainty

non-negative parameter characterizing
the dispersion of the quantity values being
attributed to a measurand

often estimated by a standard
deviation u, or the half-width of a
probability interval Up

6Guide to the expression of uncertainty in measurement (GUM), JCGM 100:2008,International Vocabulary
of Metrology (VIM), JCGM 200:2012
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Uncertainty estimation in computational chemistry Introduction

Error sources in Computational Chemistry9

Numerical errors
finite arithmetics, stochastic algorithms. . .

mostly random errors; assumed to be well controlled7,
except for numerical chaos8

Parametric uncertainty
semi-empirical methods, statistical corrections. . .

random errors; decrease with size of calibration set

Model errors
level-of-theory errors (density functional approximation, correlation level,
force-field expression. . . ), representation errors (basis-sets, grids). . .

mostly systematic errors; often the dominant error source;
no reason to be normally distributed

7Irikura et al. (2004) Metrologia 41:369
8Feher and Williams (2012) J. Chem. Inf. Model. 52:3200-3212
9Lejaeghere (2020) Uncertainty Quantification in Multiscale Materials Modeling, pp. 41–46
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Uncertainty estimation in computational chemistry Introduction

CC-UQ outputs

Prediction distributions or representative samples

available for some methods (Stochastic methods,
Statistical models, Bayesian Ensembles. . . )

Most UQ studies in the CC literature provide statistical summaries:

expanded uncertainties (Up, typically for p = 0.95)10

standard uncertainties (u)

Note: no prediction interval without distribution hypothesis

10Ruscic (2014) Int. J. Quantum Chem. 114:1097
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Prediction uncertainty validation framework Notations

Validation data sets

Let us consider a typical validation set

Vi : predicted value at point i ∈ 1 : M

uVi
: uncertainty on Vi (model uncertainty)

Ri : reference value

uRi
: uncertainty on Ri (data uncertainty)

Validation is based on

Ei = Ri − Vi : error / prediction error

for standard uncertainties uEi
=
√
u2

Vi
+ u2

Ri
(prediction uncertainty)

Prediction uncertainty quantifies the dispersion of pred. errors
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Prediction uncertainty validation framework Simple graphics

Visual appreciation
Do the errors scale with uncertainty ?

1 if uE 6= cte, plot E vs uE and guiding lines y = k ∗ x
2 if uE = cte, plot E/uE (z-score) vs V and guiding lines y = k
3 as helper, plot running quantiles (CI95)
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Prediction uncertainty validation framework Calibration validation

The Calibration/Sharpness framework12

Calibration a method is considered to be calibrated if the confidence
of predictions matches the probability of being correct for
all confidence levels

Sharpness the concentration of a predictive distribution in absolute terms.
Conditional to calibration

Pb: sharpness is a property of the forecast alone and does not
involve the observations.
−→ useful in benchmarking, not in validation. . .

Tightness11 a method is considered to be tight if it is calibrated
for any relevant subgroup of the validation data
(small-scale calibration)

11Pernot (2022) (https://arxiv.org/abs/2204.13477)
12Gneiting et al. (2007) Stat. Meth. B (https://tinyurl.com/2p8nr3ab)
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Prediction uncertainty validation framework Calibration validation

Limits of average calibration

Average calibration does not guarantee tightness
in benchmarking, sharpness is used to select tighter forecasts

Stronger calibration modes have been introduced:
group calibration13 where calibration is assessed
on relevant subgroups of the validation dataset

adversarial group calibration14 where calibration is assessed
on any random group of useful size

perfect calibration15

I propose to use local calibration, a variant of group calibration,
where the validation set is split into contiguous areas of a chosen
coordinate (predicted value, prediction uncertainty. . . )

13Chung et al. (2021) arXiv:2109.10254; Hébert-Johnson (2017) arXiv:1711.08513
14Zhao (2020) arXiv:2006.10288
15Levi et al. (2020) (http://arxiv.org/abs/1905.11659)
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Prediction uncertainty validation framework Average calibration

Different validation approaches18

Interval-based 16

lim
M→∞

1
M

M∑
i=1

1 (Ei ∈ IEi,p) = p, ∀ p ∈ [0, 1]

where IEi,p is a prediction interval at probability level p

Variance-based 17

Var
(
E|u2

E = σ2) = σ2, ∀σ2

which does not operate at the same level as interval-based validation

Note: ranking-based methods (correlation between uE and |E|; confidence
curves) cannot validate calibration/tightness, but can invalidate tightness. . .

16Kuleshov et al. (2018) (http://arxiv.org/abs/1807.00263)
17Levi et al. (2020) (http://arxiv.org/abs/1905.11659)
18Scalia et al. (2020) J . Chem. Inf. Model. (https://tinyurl.com/yc7rn7dp), Pernot (2022) _J. Chem.
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Prediction uncertainty validation framework Average calibration

Interval-based validation

An expanded uncertainty is the half-width of a prediction interval

IEi,p = [−UEi,p, UEi,p]

To validate UE,p, one should therefore test

p
?
∈ I95(νp,M), where νp = 1

M

M∑
i=1

1 (|Ei| ≤ Up,i)

and νp is a PICP (Prediction Interval Coverage Probability)

I95(νp,M) (Binomial Proportion CI) is estimated by a method avoiding
normality hypothesis (Clopper-Pearson, cc-Wilson, Agresti-Coull. . . )19

19Vollset (1993) Stat. Med. (https://tinyurl.com/5dps8u3h)
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Prediction uncertainty validation framework Average calibration

Variance-based validation
Let us consider unbiased errors of unknown distribution

E(Ei) = 0; Var(Ei) = u2
Ei

Then for z-scores zi = Ei/uEi
one has

E(zi) = 0; Var(zi) = 1

and for a set of z-scores Z = {zi}M
i=1

E(Z) = 0; Var(Z) = 1

To validate Var(Z), one should therefore test

1
?
∈ I95 (Var(Z),M)

I95 (Var(Z),M) is estimated by an adapted bootstrap method (BCa, ABC. . . )20
to avoid the normality-based textbook method

20Diciccio and Effron (1996) Stat. Sci. (https://tinyurl.com/ssztxy6k)
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Prediction uncertainty validation framework Tightness

How to test tightness ?

Proposed approach: interpret tightness as local calibration
and use calibration tests on subsets of the validation set
wrt V or uE (or any other relevant property)

LCP analysis: local PICP estimation and test
LZV analysis: local z-scores variance testing

Pb: partitioning reduces sample size (bad for test power)
−→ use overlapping/sliding areas for small datasets.
Trends in LCP-LZV curves help diagnostic.

Link of LZV/uE with perfect calibration (reliability diagram, RD)21

Var
(
E|u2

E = σ2) = σ2, ∀σ2

but RD does not deal with homoscedastic datasets.
21Levi et al. (2020) (http://arxiv.org/abs/1905.11659)
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Prediction uncertainty validation framework Summary

Overview
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Examples from the CC literature PRO2022

Reactivity Scales22

Set of 212 errors for reaction rates by an extended Mayr’s reactivity scale and
U95 values obtained by two UQ methods (a and b).
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22Proppe & Kircher (2022) ChemPhysChem (https://tinyurl.com/yckxvjkk)
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Examples from the CC literature PRO2022

Reactivity Scales23

U95 =⇒ interval-based validation
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large local uncertainties because of small groups

for overestimated uncertainties, the PICP test saturates at 1
23Proppe & Kircher (2022) ChemPhysChem (https://tinyurl.com/yckxvjkk)

Pascal PERNOT (ICP) Validation of Prediction Uncertainty in Computational Chemistry CECAM (2022-06-22) 17 / 28

https://tinyurl.com/yckxvjkk


Examples from the CC literature PRO2022

Reactivity Scales24
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24Proppe & Kircher (2022) ChemPhysChem (https://tinyurl.com/yckxvjkk)
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Examples from the CC literature BAK2021

ZPE by the ATOMIC-2 composite method25

A-posteriori estimation of U95 based on a correlation of errors
with the fraction of heteroatoms in a molecule.

Small test dataset: M = 99
{Vi, Ri, U95,Vi

}

Reference data: CCSD(T) (no
uncertainty)

Authors validate by visual
appreciation of error bars

0.2 0.4 0.6 0.8 1.0 1.2
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
U95

E

Data
Quantiles

25Bakowies and von Lilienfeld (2021) JCTC (https://tinyurl.com/ms3dy7yv), Pernot (2022) J Chem Phys
(https://doi.org/10.1063/5.0084302)

Pascal PERNOT (ICP) Validation of Prediction Uncertainty in Computational Chemistry CECAM (2022-06-22) 19 / 28

https://tinyurl.com/ms3dy7yv
https://doi.org/10.1063/5.0084302


Examples from the CC literature BAK2021

ZPE by the ATOMIC composite method
PICP testing at p = 0.95
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ν0.95 = 0.92(3): average calibration is OK
large uncertainty on PICPs, but the trends are informative
from the LCP analysis, one sees a systematic bias:
small PUs are underestimated, large ones are overestimated
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Examples from the CC literature PAN2015

Formation heats by the mBEEF method26

Bayesian Ensembles method
inflates parametric uncertainty of
exchange-correlation model to
cover errors amplitude

strong functional constraints:
tightness ???

does not disambiguate model
uncertainty from reference data
uncertainty

Set of M = 257 {Vi, Ri, uVi
}

Ri experimental, no uncertainty
provided
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26Pandey and Jacobsen (2015) Phys. Rev. B (https://tinyurl.com/5dv9spnn), Pernot (2017) J. Chem.
Phys. (https://tinyurl.com/yb6uzwzr), Pernot and Cailliez (2017) AIChE J. (https://tinyurl.com/2xxcfs2f)
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Examples from the CC literature PAN2015

Formation heats by the mBEEF method
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Var(Z) = 1.3(2), average calibration OK
the LZV analysis shows that small PUs are underestimated,
while large ones are overestimated
the confidence curve is catastrophic
these uncertainties should not be trusted
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Examples from the CC literature ZHE2022

Query by Commitee UQ

QbC uncertainties (n = 8) on formation enthalpies for AIQM1 and
ANI-1ccx27. Set of M = 472 {Ei, uVi

}
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27Zheng et al. (2022) J. Phys. Chem. Lett. (https://tinyurl.com/ccefk79z)
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Examples from the CC literature ZHE2022

Query by Commitee UQ
Stat AIQM1 ANI-1ccx Target
V ar(Z) 59 4.3 1.4
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QbC does not provide a prediction uncertainty
but both methods point reliably to largest errors
(good for active learning !)
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Examples from the CC literature HAS2019

Bayesian Neural Network

Data issued from a BNN trained to predict a MD potential28 (M = 5923)
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The color scale for uncertainty is not a proper tool for validation

28Häse et al. (2019) Chem. Sci. 10:2298
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Examples from the CC literature HAS2019

Bayesian Neural Network
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This BNN uncertainty is NOT a prediction uncertainty (V ar(Z) = 30)
but could still be used for active learning. . .
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Conclusion

Conclusions

Calibration is easy, tightness is tough !

Calibration/Tightness : a principled framework for UQ validation

CC-adapted C/T validation methods

standard PU : test z-scores variance (LZV analysis), or build RD
expanded PU : test PICP values (LCP/LRR analysis)

CC-UQ methods rarely reach calibration and/or tightness

datasets often too small for solid conclusions

should we loosen the validation criteria ?
how-much mis-calibration/mis-tightness is acceptable for a given
application ? (e.g. calibration is not useful for active learning. . . )
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Conclusion
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