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Abstract8

Transport phenomena in unsaturated porous media still present an important research topic.9

In particular, in the context of recent environmental concerns, further understanding of10

contaminant transport in the partially saturated vadose zone is necessary. However, there is11

currently a lack of understanding of the relationship between water saturation, in particular12

the two-phase distribution, and dispersion. This is due to the intricate interactions between13

the two-phase flow and the porous structure, as well as the complexity of the experimental14

techniques, which prevents a significant number of configurations from being analysed.15

We explore passive tracer transport in two-dimensional unsaturated porous media via16

experimental and numerical methods. To this goal, we conduct co-injection experiments to17

produce two-phase distributions (air/water) at different saturations in a transparent micro-18

model that mimics the topology of the Bentheimer sandstone. From these experiments, we19

generate images using multi-scale multiple-point statistics modeling (MPS). Employing the20

Lattice Boltzmann method, we calculate velocity and concentration fields for both experi-21

mental and generated images under saturated and unsaturated conditions. Our results show22

strong similarities in velocity distributions, good agreement in concentration profiles, and23

a matching of dispersion characteristics between experimental and MPS-generated images.24

MPS enables us to create a variety of unsaturated porous media structures with different25

topologies but similar transport properties. From these images, we analyse transport over26

a large range of saturations and Peclet numbers. We observe pre-asymptotic non-Fickian27

transport regimes characterised by a variance increasing with time according to a power law28

with exponent α > 1. We find that α increases as saturation decreases, due to enhanced29

flow heterogeneity, and with higher Peclet numbers. This behavior is confirmed through30

large-scale simulations.31
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Nomenclature34

φ Porosity
θ Water content
Sw Water saturation
τ Tortuosity
k Permeability
kr Relative permeability
Lx Length of the micromodel
Ly Width of the micromodel
Lz Depth of the micromodel
Pe Peclet number
ν Fluid kinematic viscosity
ρ Fluid density
P Pressure
u Local velocity field
σu Normalized standard deviation of the velocity field

1. Introduction35

Human activity influences largely the subsurface, and particularly the unsaturated vadose36

zone. This part of Earth located below the land surface and just above the water tables is37

most of the time only partially saturated with water. It plays a key role in hydrogeology,38

as the refilling of aquifers usually takes place in this part of the subsurface. The vadose39

zone can be impacted by pollution, coming from agriculture or industrial activities, which40

impairs the water resources. Furthermore, the water saturation level may vary, notably41

during periods of droughts or heavy rainfall. Therefore, it is crucial to be able to predict42

contaminant transport for various saturation conditions in the vadose zone. In contrast to43

unsaturated media, transport in heterogeneous, saturated porous media has been the subject44

of numerous studies, e.g reviewed in [1, 2]. However, dispersion in unsaturated porous media45

still remains a significant research topic, notably because of the complex multiphase flow46

interactions with the porous structure, which are not yet fully understood.47

The difficulty lies in the fact that the volume of pores accessible to pollutants depends48

on the interaction of the non-miscible air/water flow with the porous medium. Indeed, the49

presence of air clusters induces a greater flow heterogeneity. As a result, the velocity field50

presents stagnant zones with very low velocities as well as preferential paths with high ve-51

locities [3, 4, 5]. Flow, and consequently transport, will thus depend on both the saturation52

and the medium heterogeneity. In stagnant zones, transport is controlled by diffusion and53

is, therefore, very slow. Transport in the preferential paths, however, is mainly advective54

and much faster, leading to extreme solute displacements [6]. As a result, dispersion in un-55

saturated porous media is far more complex than in saturated ones. Further comprehension56

2



on the joint influence of the pore topology and the two-phase non-miscible air/water distri-57

bution on the macroscopic transport is crucial to fully understand dispersion phenomena in58

the unsaturated subsurface.59

A large number of experiments have been performed to determine the dispersion coeffi-60

cient or the dispersivity in porous structures at various saturations. However, authors have61

different points of view on the influence of saturation on dispersion. Many authors note62

an increase of dispersion/dispersivity in unsaturated porous media, compared to saturated63

conditions (e.g. [7, 8, 9, 10]), related to an increase in heterogeneity. In contrast, other64

works highlight non monotonic relations between the saturation and the dispersivity, or the65

dispersion coefficient [11, 12, 13]. Few other articles show different tendencies from those66

mentioned above (e.g. [14, 15]). These discrepancies could be explained by the limited num-67

ber of experiments, which leads to statistical incoherence; and by the different experimental68

approaches and different ways of interpreting the data.69

The determination of a constant dispersion coefficient also assumes that transport is70

Fickian, i.e. governed by a advection-diffusion equation (ADE). It is worth mentioning that71

Fickian regime is very frequently observed. Indeed, the central limit theorem states that72

transport becomes Fickian in an asymptotic regime if the variance of the displacement is73

finite. However, it has been shown that a Fickian transport model often fails to predict74

dispersion in unsaturated porous media [7, 16, 17, 18, 6, 19]. A key feature of Fickian75

transport is the linear growth of the second moment of the concentration field over time.76

Thus, the most convenient way to determine the Fickian nature of the transport is to analyse77

the time evolution of the second moment. Often non-Fickian behaviour is characterised by78

a power law time evolution of this moment, referred to as ’anomalous’ dispersion [20, 16,79

17, 21]. The main objective of this paper is therefore to assess and quantify the nature of80

transport in unsaturated porous media by analysing the temporal evolution of the second81

spatial moment.82

The effect of saturation on dispersion has been the subject of numerous studies. In83

particular, three-dimensional column experiments are often used to study dispersion in un-84

saturated sand, rock or soil samples (e.g. [8, 10, 11, 9, 7]). In such configurations, due to85

the opacity of the samples, transport is often analysed using breakthrough curves (average86

concentration at the outlet). Dispersion in unsaturated porous media can also be studied87

by means of transparent micromodels. Indeed, micromodels allow direct visualization of the88

solid structure, two-phase distribution and concentration pattern. Dispersion is then deter-89

mined from the spatial moments of the concentration profiles as well as the breakthrough90

curves [7, 6, 5, 4].91

The first step in assessing the influence of saturation on the dispersion is to understand92

the spatial distribution of the immiscible phases. A simple way to generate realistic unsatu-93

rated porous media is to co-inject the two immiscible phases. Immiscible multiphase flow pro-94

cesses have been extensively studied using micromodel experiments (e.g. [22, 23, 24, 25, 26?95

]). Multiphase configurations mainly depend on the capillary number, on the saturation of96

each phase and on the flow history [24]. Many tracer experiments have been performed in97

micromodels in either saturated (e.g. [27, 28, 29]) or unsaturated (e.g. [30, 31, 12, 6, 5, 4, 32])98

conditions. However, transport experiments in micromodels are limited by several aspects.99
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As dispersion tends to increase in unsaturated conditions, the micromodel size may not al-100

ways be appropriate. Furthermore, as saturation decreases with flow rate, it is difficult to101

investigate a wide range of Peclet numbers (ratio of advection time to diffusion time) for a102

given saturation. In addition, as discussed in [5, 33], it is difficult to experimentally obtain103

neat tracer injection conditions due to the dispersion in the inlet tubing. Consequently, the104

experimental uncertainties compromise the analysis of the nature of dispersion.105

To overcome these difficulties, several authors have used numerical simulations. The106

critical factor for these simulations is to ensure an accurate representation of the immisci-107

ble phase distribution. Images can be obtained either experimentally or numerically (from108

two-phase flow simulations or machine learning methods) [34, 4, 19, 17]. The main disad-109

vantage of numerical simulations is the high computational cost of solving the two-phase110

flow equations.111

However, numerical simulations allow a more accurate resolution of the transport equa-112

tion with a neat inlet condition, a wider range of Peclet number and are less limited in size113

than experiments. Highly parallelizable Lattice Boltzmann simulations are commonly used114

to simulate flow and transport in complex porous media [35, 36, 37].115

Further understanding of the coupling between pore structure, immiscible phase distribu-116

tion and transport requires a statistically relevant amount of data. Indeed, as the saturation117

decreases, heterogeneity becomes more important, as the air cluster size distribution widens.118

To address this augmented heterogeneity, one can either increase the sample size or119

the number of configurations with identical statistical properties. Jiménez-Martinez et al.120

[4] considered a machine learning approach based on multiple-point statistical simulations121

(MPS) [38] to generate two-phase distributions in a given two-dimensional porous struc-122

ture consisting of irregularly arranged spheres. The MPS approach, initially developed for123

geological modeling, makes it possible to generate images with complex features that are124

derived from a reference image, referred to as the Training Image (TI) and representing the125

expected structure. In this work, we extend the machine learning approach considered by126

Jiménez-Martinez et al.. However, unlike Jiménez-Martinez et al. who only generate the127

air-water distribution for a given solid configuration, we use an MPS algorithm to generate128

both different solid and water/air configurations. The training images represent two fluid-129

phase distributions (air/water) in porous media obtained experimentally, when a steady130

state is reached and air clusters are immobile. By this approach, the coupling between131

saturation and pore topology can be easily studied for different structures. Moreover, this132

method allows a significant statistical analysis.133

The article is structured as follows: we begin by presenting experiments on two-phase134

flow in a micromodel that represents a 2D natural rock formation. These experiments135

enable the acquisition of a training image database for different phase configurations. In136

the following section, we introduce the MPS algorithm used to generate the image database137

with various configurations and different saturations. Then, we will introduce the Lattice138

Boltzmann simulations performed to solve flow and transport in these images. Finally, we139

analyse the distribution of air and water in the porous medium as well as the dispersion,140

Fickian or non-Fickian, depending on the saturation and Peclet number.141
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2. Experimental and numerical methods142

In the following, we briefly present the experimental and numerical methods developed143

and their validation. Further details can be found in the Supplementary Information.144

2.1. Multiphase flow in a micromodel145

This section provides an overview of the experiment conducted in an irregular porous146

glass micromodel to obtain air/water distributions at different saturations. To this end, we147

apply co-injection of air and water. We performed experiments at various fractional flow148

rates in order to obtain images at different saturations. We hereby present the micromodel149

structure and the experimental setup.150

2.1.1. Experimental setup151

Micromodel. We use a glass micromodel with an inner etched irregular network. The dimen-152

sions of the micromodel are Ly = 10mm wide by Lx = 17mm long. The model is wet-etched153

with depth of Lz = 40µm. The interior model network is based on an image of a 2D slice154

of Bentheimer sandstone rock, obtained from X-Ray tomography. It was modified to ensure155

percolation in 2D leading to a final porosity higher than the one of the original rock. The156

micromodel is presented in Fig. 1a. The porous medium is characterised by a total number157

of 2600 grains. The average porosity of the micromodel is φ = 66 % and the permeability158

including inlet and oulet tubings is 4.7 Darcy (taken from [39]). The micromodel can be159

considered as strongly water wetting as it is made of glass.160

Microfluidic set-up. The micromodel is connected to a Vinduum pump (delivering a contin-161

uous flow rate) at lateral inlets for water injection and to a Harvard syringe pump at the162

center inlet for gas injection. The outlet is connected to the pressure and flow rate sensors.163

The gas used is ambient air and the liquid is MilliQ water. We used Parker Quink ink164

as tracer. The value of the diffusion coefficient at our experimental conditions is around165

2.710−8mm2.s−1 following the measurement of [40]. The micromodel is inserted in a holder166

and placed horizontally on the optical bench (avoiding gravity effects), above a flat dome167

red light with adjustable intensity. A high speed camera with a lens is placed above the168

system to visualize the air-water distributions. The camera JAI (SP-12000M-CXP4 model)169

provides a 12-megapixel monochrome resolution (4096× 3072 pixel), the full-field framerate170

is 189 frames per second (fps). The acquisition is performed by the Hiris software. The ex-171

perimental setup is presented in Fig. 1b. The pressure drop of the water phase is measured172

to determine the permeability of the system. The room temperature was regulated at 21◦C.173

Co-injection experiments. The objective of the experimental part is to obtain a homogeneous174

distribution of trapped air clusters in the micromodel at different water saturations. To175

this goal, we chose to inject air and water simultaneously in the micromodel at different176

fractional flow rates, resulting in uniform distributions of the air and the water phase in the177

micromodel. Modifying the fractional flow rate between air and water results in different178

water saturations at steady state. The flow rates were in the range of 0.1µL.min−1 and179

1mL.min−1. Co-injection is not maintained over a long period of time but is stopped180
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a)

Figure 1: a) Micromodel, b) Experimental setup

once the air distribution reaches a steady state after several seconds. Then we preform the181

transport experiment. Please note that similar experimental protocols were used for example182

in [23, 24, 41, 42] providing a deeper analysis of the two-phase distribution resulting from a183

co-injection procedure.184

Image processing. The solid, air and water phases are distinguished through segmentation185

of the images using a thresholding technique. Each phase is then associated to a specific186

grey level. Fig. 2 shows the original two-phase distribution in the micromodel a) and the187

segmented image b). Further details on the image segmentation can be found in the Sup-188

plemental Information (SI). The segmented image is analysed using the ImageJ Analyse189

Particles tool to obtain structure properties: grain and air cluster size as well as shape char-190

acteristics. Pore size distribution is computed using ImageJ plugin for Watershed separation191

on the binarized porous structure.192

2.1.2. Characterization of non-Fickian dispersion with spatial moments193

Fractional dispersion has been introduced to describe anomalous dispersion where the194

spatial and/or temporal moments vary according to a power law (e.g. [43, 44]). For example,195

it can be associated with random walk models such as the Levy walk and Levy flights, which196

are characterised by broad distributions of temporal or spatial random steps [45, 46, 47].197

To characterise non-Fickian dispersion, we determine the temporal evolution of the sec-198

ond spatial moment (see Supplemental Information). We then fit the second moment with199

a power law with exponent α and a fractional dispersion coefficient Dfrac
α :200

σ2
fit = Dfrac

α tα. (1)
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a)

Figure 2: Phase segmentation: a) Raw experimental image with air clusters and water. b) Processed image
after phase segmentation, air (red), solid (black), water (white).

The coefficient α characterises the nature of dispersion. If α is close to 1, dispersion is Fick-201

ian, it is non-Fickian otherwise. Dfrac
α quantifies the magnitude of the dispersion (Fickian or202

not). However, it is worth noting that comparing different values of Dfrac
α is meaningless as203

soon as α is different. For this reason, when comparing the evolution of Dfrac
α for different204

parameters (Peclet number Pe, S), we are led to impose α.205

2.2. Flow and transport equations206

We treat the non-wetting phase as immobile because we assume that the flow rate for207

the tracer experiment is small enough not to displace the gas. Considering higher flow rates208

would require the use of a two-phase flow solver, which has a much higher computational209

cost. Consequently, we treat the gas as solid and consider flow and transport only in the210

water phase. In the following, we first detail the flow and transport equations solved in211

order to obtain the velocity and concentration field for each configuration. We then briefly212

present the numerical method used for the resolution of the equations. Finally, we present213

a comparison between experimental and numerical data.214

Flow equation. The local velocity field u in the fluid phase is computed by solving the215

Darcy-Brinkman equation [48]:216

−ρν
k
u−∇P + ρν∇2u = 0, (2)

where ρ is the density of the fluid, ν represents the kinematic viscosity and P is the pressure.217

The Darcy-Brinkman equation is used to compute the depth-average velocity. This allows218

to describe a 3D velocity field with a 2D equation as demonstrated by [49]. The permeability219

k can be computed from the depth as k = Lz
2/12. Physically, the Laplacian term models220

the transverse diffusion of momentum. It can be used, for example, to describe the boundary221

layer introduced by the no-slip condition at the wall. In principle, the viscosity in front of222

the Laplacian should be slightly different from that in the Darcy term [49]. However, in223
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our case the permeability is so low that the boundary layer is very small and therefore has224

almost no effect on the dispersion [50, 51]. For simplicity, we have chosen to assume that225

the two viscosities are equal. And for the same reason, we assume a no-slip condition at the226

air-water interface.227

Advection-Diffusion-Equation. Transport is simulated by solving the local advection-diffusion228

equation given by229

∂c

∂t
+ u ·∇c−Dm∆c = 0, (3)

where c is the solute concentration in the fluid, u the local velocity vector obtained from230

the resolution of the Darcy-Brinkman equation and Dm the molecular diffusion coefficient.231

Similar to previous work, [4], we use a constant diffusion coefficient here. We note however232

that because the flow profile is not homogeneous in the depth, one should expect that the233

local flow velocity increases the local dispersion coefficient (Taylor dispersion). By neglecting234

this effect, we thus assume that the molecular diffusion is dominant over advection at the235

scale of the gap depth (see also [51]). Indeed, the Peclet number defined with the depth is236

lower than the one defined using the pore diameter.237

Lattice Boltzmann simulations. Two-Relaxation-Time Lattice (TRT) Boltzmann simula-238

tions were used to solve Eq. (2) and Eq. (3) to obtain the flow and concentration field239

in the porous structures. Details on Lattice Boltzmann schemes for the resolution of Eqs.240

(2) and (3) and the applied boundary conditions are provided in the Supplemental Infor-241

mation file or can be found in [52, 53]. Parameters chosen for the simulation can also be242

found in the Supplemental Information file. LB computations were performed by adapting243

the open framework software Walberla [54, 55].244

2.3. Comparison of experiments and simulations245

We consider continuous tracer injection starting at a specific time t = 0, where molecules246

are injected at the inlet. Fig. 3 shows an image of the micromodel with the three phases247

(water, air, solid), the porous structure on which simulations are performed (supposing that248

the gas behaves as the solid), the velocity field in the fluid phase and the concentration field.249

250

We evaluate the influence of these simulation assumptions on transport and the suitability251

of the method for studying transport in unsaturated micromodels. This is achieved by252

performing a comparative analysis between the experimental work and Lattice Boltzmann253

simulations for three different saturations as shown in Fig. 4. Since the numerical and254

experimental injection conditions are not the same, the comparison requires to shift the255

origin of time and position. Notably, as the front is more dispersed in the experiments,256

a position relative to the real position in the experimental case is defined with an offset257

subtracted to compensate for the spreading at the inlet. Qualitative agreement is then258

observed, in particular the preferential paths and stagnant, dead end zones are fairly well259

reproduced. To be more quantitative, we plot the experimental and numerical concentration260

profiles (see Fig. 5a-c) at different time. As can be seen, there is an agreement between261
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Figure 3: a) Segmented image, air (red), solid (black), water (white). b) Binary image with air clusters as
solid (black) used for the velocity field simulation. c) Velocity field magnitude. d) Concentration field with
continuous injection from the top.

the two profiles that persists over time. This agreement is then confirmed by comparing the262

time evolution of the second moment of the profiles in Fig. 5d. However, there is a difference263

at long times for low saturations. This is due to the high degree of heterogeneity within the264

system, that is reflected in the concentration profile. It is important to acknowledge that265

this heterogeneity represents the main challenge in understanding transport in unsaturated266

porous media. Consequently, the system might not be inherently representative, as the size267

of the micromodel may be insufficient to achieve a smooth enough signal. As mentioned in268

the introduction, one way to overcome this difficulty consists in generating a large number269

of different synthetic but realistic porous media with the adequate characteristics to capture270

the transport behavior. We propose here to investigate the use of the MPS algorithm to271

generate such images. Another way consists in increasing the size of the system, which is272

unfortunately more time consuming.273

2.4. Generation of unsaturated, artificial porous media: multiple-point statistics modeling274

(MPS)275

In order to generate unsaturated, artificial porous media having the same structural276

and statistical properties as the experimental ones, we apply here the multi-scale MPS277

algorithm described in [56, 57, 58, 59] to the experimental images. MPS algorithms allow to278

generate images with complex shapes and structures. Their leading idea consists in retrieving279

information about the desired shape, spatial distribution and connection of the objects from280

a training image (TI), that represents a model of the expected structure. This information281

is then used to fill iteratively the simulation grid, resulting in a synthetic medium with a282

spatial distribution based on the previous characteristics. Further details on the multi-scale283

MPS algorithm used in this work can be found in the Supplemental Information.284
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a) b) c)

d) e) f )

Figure 4: Comparison of experimental and simulated concentration fields at the same mean position of
the front µ (first moment of the concentration profile) for three saturation values. µ is normalized by the
medium length Lx. C = 1 corresponds to C = C/Cmax

The MPS algorithm is applied here with training images derived from experiments and285

consisting of two-fluid-phase distributions (air/water) in porous media. The training images286

considered here are not the experimental images, but cleaned versions of these images ob-287

tained by removing non-physical artefacts resulting from the image processing, such as some288

air clusters completely enveloping grains or water contained in grains. Elements of small size289

whose effect on the flow is negligible are also suppressed. As detailed in the Supplementary290

Information, the MPS algorithm parameters are chosen as a trade-off between the simulation291

time and the quality of the results. The generated images present small defects that are not292

physical: discontinuities of the different phases, absence of water meniscus between grains293

and air clusters, inclusions in grains or air clusters. These defects may be lessen with other294

configuration parameters for the MPS algorithm, but at the cost of longer simulation times.295

Instead, we apply here a post-processing algorithm to the generated images to suppress these296

defects (see Supplemental Information).297

2.4.1. Validation of the MPS algorithm method for flow and transport in MPS generated298

images299

The quality of the resulting generated images was assessed on three different saturation300

values (Sw = 1, Sw = 0.87 and Sw = 0.70). We conducted a comparison of various structural301

characteristics between the experimental and the MPS generated images. These character-302

istics include the distribution of pores and throats, as well as the size distribution of air303

clusters. The MPS algorithm proved to be effective in accurately replicating the structural304

properties of unsaturated porous media as discussed in the Supplemental Information. In305

addition, we compared flow and transport properties of the generated structures and the306

experimental ones. To this goal, we simulated the velocity and concentration fields using307
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Figure 5: a-c) Comparison of experimental and simulated concentration profiles for the same air/solid
configuration and three saturation values (Sw = 1, Sw = 0.86 and Sw = 70) at three normalized times. d)
Comparison of the second moment evolution with the normalised time t′ for the three saturations. An offset
has been subtracted to the second moment for a better comparison of the slopes.

the Lattice Boltzmann method (LBM) described above. As presented in the Supplemental308

Information, the velocity fields show a very good agreement.309

Furthermore, Fig. 6 shows the concentration fields in the experimental and generated310

images for three saturations. The patterns of dispersion, such as the preferential flow paths311

and the stagnant dead end zones, are correctly reproduced for the three saturations. Also,312

the transport properties, characterised by the concentration profiles and the second moment313

of the dispersion, showed a very good agreement as well (see Supplemental Information file).314

In summary, the dispersion behaviour showed consistency between the generated and ex-315

perimental porous media over all investigated saturation levels. The methodology presented316

in this study provides a valuable means of investigating dispersion in unsaturated porous317

media over a wide range of saturations, including different phase configurations and porous318

media sizes.319
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Figure 6: Assessment of the MPS method to study flow and transport. The flow and transport have been
simulated using LBM with the original experimental images and the MPS generated images. Simulated
concentration fields are given for three saturation values at t = 1.2 · 105 LB units, Cmax = 1.

3. Numerical results320

3.1. Image datasets321

By conducting multiphase flow experiments, we obtained phase distributions from co-322

injection, covering a saturation range from 0.55 to 1. Our dataset resulting from experiments323

consists of 25 images. From this dataset, we extracted sub-images, called ”training images”324

(TI) to generate new realizations. Using a sufficiently large number of training images, we325

can create a training image dataset that covers the various phase configurations present in326

the micromodel and takes into account their inherent variability.327

As explained above, two different approaches are employed to deal with the heterogeneity328

of the unsaturated porous media. We can either analyse a large number of small generated329

images, or we can analyse one single, larger image. This results in two different sets of data:330

• The ”small size” dataset: This dataset comprises images that are approximately equiv-331

alent in size to the micromodel (Ly
∗ = 1980 pixels, Lx

∗ = 3780 pixels or Ly = 0.90332
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cm, Lx = 1.73 cm). To capture the system’s variability, we generate multiple realiza-333

tions from each training image. This dataset enables us to study short-term dispersion334

phenomena within a computationally feasible time-frame.335

• The ”large size” dataset: the images within this dataset are approximately four times336

longer (Ly
∗ = 1980 pixels, Lx

∗ = 18000 pixels, or Ly = 0.90 cm and Lx = 8.3337

cm). However, due to their larger dimensions, simulating flow and transport in these338

images involves significantly higher computational costs (9000 processors were used in339

this case, compared to 180 for the shorter images). Therefore, only a limited number340

of these longer images was used.341

3.2. Influence of water saturation on flow properties (small size dataset)342

In this section, we investigate the influence of saturation on the flow properties, such343

as permeability, tortuosity and velocity distribution which are computed from the velocity344

fields (see Fig. 7).345

Figure 7: Norm of the velocity fields normalized by the mean flow rate for different saturations (MPS
generated images). umax is different for every case.

3.2.1. Permeability346

Considering the fact that many permeability models incorporate the water content as a347

parameter, we define θ = φSw to allow comparisons, where φ = 0.66 is constant.348

Fig. 8a illustrates the evolution of the effective permeability kkr(Sw), where kr is the349

relative permeability corresponding to the water content θ. kkr increases as the water350

content, or saturation, increases. In the fully saturated medium (Sw = 1, θ = φ = 0.66), the351

permeability equals 20 Darcy. As the saturation decreases to its minimal value (Sw = 0.55352

and θ = 0.40), the relative permeability tends to zero. Please note, that in this case, the353

effective permeability of the fully saturated micromodel is much higher than values provided354

13



in the Experimental setup. This is due to the fact, that inlet and outlet tubings included in355

the experimental acquisition of the permeability reduce the latter.356

Numerous experimental and numerical studies have extensively explored the relationship357

between porosity, water content and permeability in saturated and unsaturated media (see358

for instance [60, 61]). Many of them propose a power law relationship with the porosity or359

the saturation (e.g. [62, 63]). Because the effective permeability tends to zero for a non zero360

value of water content, we fit our data using the following relation: kkr = R(θ − θ0)c, with361

R = 153, c = 2.2, and θ0 = 0.3. And thus362

kkr(Sw) = Rφc(Sw − S0)
c, (4)

with S0 = θ0/φ.363

In summary, the evolution of the effective permeability of the medium is consistent with364

certain classical models that establish the relationship between permeability and porosity in365

experimental systems. Consequently, the effective permeability kkr of the generated images366

can be modelled by empirical laws with physical parameters.367
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Figure 8: a) Effective permeability kkr as a function of the water content θ = φSw. The continuous line
corresponds to the following power law fit: kkr = R(θ−θ0)c, with (R, c, θ0) = (159.3, 2.3, 0.3). b) Tortuosity
τ as a function of the water content θ. The continuous line is a logarithmic fit: τ = 1−p ln θ, with p = 0.43.

3.2.2. Tortuosity368

Tortuosity quantifies the complexity of the flow paths within the porous material. A369

simple approach to calculate tortuosity is as follows: τ = 〈|u|〉
〈|ux|〉 , where |u| is the velocity370

norm and 〈|ux|〉 is the average streamwise velocity component.371

In Fig. 8b we show that tortuosity decreases with increasing saturation, suggesting that372

flow paths become more tortuous at low saturations, which can be observed from the velocity373

fields shown in Fig. 7. At lower saturations (or water content) the tortuosity reaches a374

value of 1.4, indicating that the transverse and longitudinal velocities are of the same order375

of magnitude. Here again, there is a lack of consistency in models that incorporate the376

connection between tortuosity and saturation. However, numerous models exist to explain377
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the relationship between tortuosity and porosity (see [64] for more information), among them378

logarithmic models as for example proposed by [65]. We applied this logarithmic model to379

fit our data:380

τ = 1− p ln θ, (5)

with p = 0.43.381

In summary, the evolution of flow tortuosity aligns with classical models that describe382

the relationship between tortuosity and porosity in experimental model systems. We remind383

that we include the gas in the definition of porosity (water content).384

3.2.3. Flow velocity distribution385

In Fig. 9a, the distribution of normalized velocity, |u|/〈|u|〉, is plotted for various satura-386

tion values. It is observed that as the saturation decreases, the velocity distribution becomes387

wider, and the tail of the distribution extends towards lower velocities. This widening sug-388

gests the formation and expansion of dead-end regions within the medium. Notably, at lower389

saturation levels, a second peak emerges at very low velocities (|u|/〈|u|〉 ∼ 10−5), indicating390

the presence of nearly stagnant zones in the flow. Additionally, there is a spreading towards391

high velocities with increasing saturation, especially below Sw = 0.70. These high velocities392

arise from the formation of preferential paths with high velocity. This flow heterogeneity393

can be quantified using the velocity standard deviation σu. Fig. 9b reveals that the stan-394

dard deviation decreases as the saturation increases. For the lowest saturation values, the395

standard deviation is approximately three times higher than that in saturated conditions.396

The velocity standard deviation can be reasonably fitted with a power law:397

σu ' aScw + b (6)

with (a, b, c)= (0.62, 0.02,−1.8).398
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Figure 9: a) For different saturations, distributions of log(unorm), with unorm = |u|/〈|u|〉, the interstitial
velocity magnitude normalized by the mean interstitial velocity. b) Normalized standard deviation of the
interstitial velocity as a function of saturation. The line corresponds to a power law fit: σu = aScw + b, with
(a, b, c)= (0.62, 0.02,−1.8).
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3.3. Effect of water saturation and Peclet number on transport (small size dataset)399

We perform LBM simulations on MPS generated images, covering the experimental range400

of saturation [0.55, 1] and explore the following range of Peclet numbers: Pe ∈ [0.001, 1000],401

where the Peclet number is defined as402

Pe =
〈|u|〉dpore
Dm

. (7)

〈|u|〉 is the mean local velocity, dpore the mean pore diameter of the porous medium and Dm403

the molecular diffusion coefficient.404

3.3.1. Effect of saturation on dispersion405

Figure 10: Concentration fields for four saturation values and three mean positions of the concentration
front (µ0 = 0.18Lx, µ1 = 0.43Lx, µ2 = 0.65Lx) with Pe = 100.

Fig. 10 shows the time evolution of the concentration fields for different saturations and406

Pe = 100. At full saturation the concentration front is relatively flat. As the saturation407

decreases, the front becomes more heterogeneous and spreads faster with time. In particular,408

preferential flow paths and dead end zones become more pronounced. We characterise409

dispersion by the second moment as a function of time, as shown in Fig. 11a. For this410

Peclet number, we observe that the second moment is not proportional to time, in saturated411

and unsaturated conditions. The dispersion is therefore non-Fickian for any saturation. To412
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Figure 11: a) Second moment as a function of time for different saturations with Pe = 100. b) Fractional
dispersion coefficient as a function of saturation. The continuous line represents an exponential trend,
Dfrac

1.5 = b exp−Swa, with (a, b) = (5.5, 2.0), diffusive regime: σ2 ∝ t, ballistic regime: σ2 ∝ t2.

quantify the dispersion magnitude, we compute the mean of the power law coefficient α413

for all the realizations and saturations, which is equal to 〈α〉 = 1.5. We then compute the414

fractional dispersion coefficient with this exponent using Eq. (1). Results are presented415

in Fig. 11b. The fractional dispersion coefficient increases by more than a decade as the416

saturation decreases from Sw = 1 to Sw = 0.55. Roughly speaking, the decay follows an417

exponential trend for the unsaturated cases, with a small inflection around Sw = 1. This418

trend is consistent with the observation in 3D porous media by [11, 66], although these419

authors fit their data with a function different from ours (power law decay).420

3.3.2. Effect of the Peclet number on dispersion421

In this section, we explore the influence of the Peclet number on dispersion, starting with422

saturated conditions followed by unsaturated conditions.423

Saturated medium. Fig. 12 illustrates how the power law index α evolves with the Peclet424

number. At high Peclet numbers, α exceeds one (∼ 1.4) and decreases as the value of the425

Peclet number decreases. The exponent reaches 1 for Peclet numbers less than one. In426

other words, for high Peclet numbers, the dispersion is dominated by advection, leading427

to non-Fickian behaviour. The non-Fickian character slowly diminishes with decreasing428

Peclet number as diffusion becomes more effective. When diffusion and advection are of429

the same order (Pe ∈ [1, 10]), α reaches 1 (Fickian transport). We also compute the pure430

diffusion case (Pe = 0) and observe, as expected, that the transport is Fickian (α = 1) and431

the value of the dispersion is below the molecular diffusion coefficient, allowing to define a432

diffusive tortuosity τd = 1
D∗(Pe=0)

= 2.15. The effect of Peclet number on dispersion has been433

thoroughly studied in the literature for saturated porous media [67, 68, 69]. Most of these434

studies report the evolution of the dispersion coefficient, i.e assuming Fickian transport435

α = 1, as a function of the Peclet number. For comparison, we thus compute in Fig. 12 a436

normalized effective dispersion coefficient, imposing αimposed = 1: D∗ = Dfrac
α=1/Dm. For high437
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Peclet number values, D∗ is approximately proportional to the Peclet number. As the Peclet438

number decreases, D∗ slowly converges to a constant value smaller than 1. This evolution439

with the Peclet number is thus in good agreement with the literature.440

In conclusion, we have shown that while the evolution of the dispersion coefficient with441

the Peclet number is qualitatively consistent with the literature, the transport deviates from442

the Fickian one for Pe & 10. In this range, the value of α rises above 1.443
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Figure 12: Evolution of the power law index α (dots) and the normalized effective dispersion coefficient

D∗ = Dfrac
α=1 /Dm (crosses) with the Peclet number for the saturated case Sw = 1. The values for no flow

condition (Pe = 0) are shown with a red and blue line for α(Pe = 0) and D∗(Pe = 0) respectively. Error
bars of α are estimated from the power law fit.

Unsaturated medium. We now examine the influence of the Peclet number on α and D∗ =444

Dfrac
α=1/Dm for different saturations. Fig. 13a displays how the exponent α changes as the445

Peclet number varies. For all saturations we observe a similar dependence on the Peclet446

number as in the saturated case. Namely, there is a transition from Fickian behaviour447

(α = 1) at low Pe to non-Fickian behaviour (α ∼ 1.4) at higher Peclet number. However,448

we note that the Peclet number of the transition depends on the saturation, with the tran-449

sition occurring at lower Pe (almost two decades) for the lowest saturation. Also, for lower450

saturations, the transition is stiffer. Fig. 13b shows the evolution of the normalised effec-451

tive dispersion coefficient D∗ (α = 1) with the Peclet number. Similarly to the saturated452

case, the dispersion coefficient increases with the Peclet number. As for the saturated case453

the dispersion coefficient is constant for low Peclet number. At a given Peclet number, D∗454

starts to increases with the onset of the transition depending on the saturation. For lower455

saturation, the onset occurs at a significantly lower value of the Peclet number. For a given456

Peclet number, D∗ is therefore higher at lower saturation. Interestingly, the onset of the457

transition for α and D∗ is of the same order of magnitude of Peclet number. Note that the458
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Figure 13: Evolution of the power law index α a) and normalized dispersion coefficient b) with the Peclet
number for different saturation values. The values of D∗ for no flow condition are shown by horizontal lines.
Error bars of α are estimated from the power law fit.

value of D∗ in purely diffusive conditions (Pe = 0, straight line in Fig. 13) decreases with459

reducing saturation: the diffusive tortuosity of the medium thus rises with saturation.460

Fig. 14 shows the evolution of α with saturation for different, specific Peclet numbers.461

For high Peclet numbers, α is relatively independent of saturation, but as the Peclet number462

decreases, the dependency becomes more pronounced. In 2D regular structures, Velasquez463

et al. [17] observed a transition from Fickian to non-Fickian behavior with decreasing464

water saturation. 3D transport experiments using NMR imaging in homogeneous rock with465

various degrees of saturation [70] show non-Fickian dispersion even in saturated conditions,466

with a non-Fickian character enhanced by lower saturations. Our results are therefore467

representative of a general tendency and most likely not constraint by the geometry of the468

porous media. As discussed in the introduction, similar micromodel transport experiments469

have been performed by [3, 33, 4, 71] using cylindrical pillars of different diameters. Although470

they observed non-Fickian transport for the unsaturated case, the exponent α is difficult471

to compare quantitatively. For example, ballistic behaviour (α = 2) was observed in [33],472

whereas in our case α is below 1.5 even at high Peclet number. This difference could473

be attributed to the porous structure of the micromodel, which strongly influences the474

immiscible distribution.475

To conclude, dispersion is non-Fickian for a larger range of Peclet numbers in unsaturated476

conditions. At high Peclet number, transport is dominated by advection even in saturated477

conditions and transport is non-Fickian. For intermediate Peclet number, dispersion is478

Fickian only for high saturations but not for smaller saturations. For sufficiently low Peclet479

numbers, dispersion is dominated by diffusion and becomes Fickian even for the lowest480

saturations.481

3.4. Large size dataset simulations482

In the previous section, we observed a non-Fickian behavior for a large range of param-483

eters. However, it is worth recalling that asymptotic non-Fickian behavior is only expected484
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Figure 14: Dependence of the power law index α with saturation for different Peclet numbers. The trend
is highlighted by a linear fit to each curve. The blue points correspond to values computed for the short
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20



for non-finite variance of the velocity distribution. As shown in Fig. 9, the variance of the485

velocity field increases with decreasing saturation while remaining finite. This means that486

one should expect the dispersion to be Fickian in an asymptotic regime, suggesting that the487

observed non-Fickian regime would only be transient. For this reason, we performed several488

simulations with a very large domain as described above. Fig. 15a shows the variance as489

function of time for five different saturations with an intermediate Peclet number, Pe = 5.490

The evolution of the variance confirms the non-Fickian tendency over longer times, but no491

change in the temporal behavior (e.g. transition to the asymptotic regime) was observed492

for any saturation. We conclude that our domain is still too short to reach an asymptotic493

regime. However, since the exponents α in the large size domain (Fig. 15b) and the smaller494

one are similar (α increases with decreasing saturation), it indicates that the small size sam-495

ples are large enough and more efficient for quantifying the transport properties in partially496

saturated porous media.497

Figure 15: Results for large system size (18000 × 1980 pixels2) for Pe = 5. a) Displacement variance as
function of time for different saturations. b) Corresponding power law index α as a function of saturation.

4. Conclusions and Discussion498

In this article we investigated passive transport phenomena in two-dimensional unsatu-499

rated porous media coupling experiments and numerical simulations. Two-phase distribu-500

tions (air/water) for different saturations were obtained by means of co-injection experiments501

in a micromodel reproducing the topology of a Bentheimer sandstone. From these experi-502

mental images, we generated new images using a multi-scale MPS algorithm. Using Lattice503

Boltzmann method, we computed velocity and concentration fields in both experimental and504

generated images, for saturated and unsaturated conditions. We showed that the velocity505

distributions were very similar. The concentration profiles were in very good agreement506

and the variance indicates that the dispersion characteristics of the experimental images are507

well reproduced by the MPS images. Consequently, MPS allowed the generation of a large508

number of unsaturated porous media images having a new topology but similar properties.509

For a large number of samples covering the saturation range between 0.55 and 1, we510

computed transport for different Peclet numbers. The main result of this study is the511
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observation of non-Fickian behaviour for a wide range of these parameters. This behaviour512

is characterised by a variance that increases with time according to a power law with an513

exponent α. We have determined the evolution of this exponent as a function of saturation514

and Peclet number. Overall, α increases with decreasing saturation due to the increase in515

flow heterogeneity, and increases with the Peclet number. This behavior has been confirmed516

by large size simulations. However, these large size domain simulations did not exhibit the517

expected transition to a Fickian regime.518

As discussed in the introduction, the physical origin of anomalous transport lies in the519

strong heterogeneity of velocity field and residence time (see also [71]). It is therefore not520

surprising to find that decreasing the water saturation enhances anomalous behavior, as521

it increases both the extent of the velocity distribution, but also the number of stagnant522

zones. What is more interesting, however, is the fact, that while saturation greatly increases523

the prefactor of the power law D∗, it changes only slightly the exponent α (around 1.5524

at high Peclet number). The exponent seems to depend mainly on the Peclet number:525

1 for low values and 1.5 for high values. In fact, diffusion increases the exchange rate526

between different velocity zones. Reducing the Peclet number therefore decreases the effects527

of extreme velocity values and thus favours normal transport. However, we observe that528

decreasing saturation shifts the Peclet number value of the transition by increasing the529

extent of the high and low velocity zones. We also note, that, while the α exponent in our530

case becomes relatively constant for high Peclet number, other studies in different geometries531

show higher exponents [33, 16, 17]. This suggests that the exponent value may depend on532

the geometry of the porous structure.533

There are several ways to extend this study. First of all, it would be worthwhile to repeat534

this method for 3D geometry. If 3D X-ray tomography allows the determination of air and535

water distribution in natural media, the main drawback is the small sample size. A 3D536

MPS algorithm could therefore be used to generate many other configurations to perform537

statistical analysis on more realistic rock. This would also allow lower saturation values to538

be investigated. Another possible direction could be to analyse more carefully the origin of539

the non-Fickian regime. For example, one could use the CTRW framework to determine the540

resident time distribution. One possible outcome of such approach would be the estimation541

of the duration of this transient non-Fickian regime.542
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two-phase flow in porous media: statistics and transport properties, Physical review letters 102 (7)606

(2009) 074502.607

[24] T. Chevalier, D. Salin, L. Talon, A. Yiotis, History effects on nonwetting fluid residuals during desat-608

uration flow through disordered porous media, Phys. Rev. E 91 (4). doi:10.1103/physreve.91.043015.609

[25] F. Kazemifar, G. Blois, D. Kyritsis, K. Christensen, A methodology for velocity field measurement610

in multiphase high-pressure flow of CO2 and water in micromodels, Water Resour Res 51 (4) (2015)611

3017–3029. doi:10.1002/2014wr016787.612

[26] N. Haque, A. Singh, U. Saha, Experimental visualization and analysis of multiphase immiscible flow613

in fractured micromodels using micro-particle image velocimetry, J. Energy Res. Technol. 144 (2).614

doi:10.1115/1.4050958.615

[27] J. Wan, T. Tokunaga, C.-F. Tsang, G. Bodvarsson, Improved glass micromodel methods for studies of616

flow and transport in fractured porous media, Water Resour Res 32 (7) (1996) 1955–1964.617

[28] Y. Corapcioglu, S. Chowdhury, S. Roosevelt, Micromodel visualization and quantification of solute618

transport in porous media, Water Resour Res 33 (11) (1997) 2547–2558. doi:10.1029/97WR02115.619

[29] F. Watson, J. Maes, S. Geiger, E. Mackay, M. Singleton, T. McGravie, T. Anouilh, T. Jobe, S. Zhang,620

S. Agar, et al., Comparison of flow and transport experiments on 3d printed micromodels with direct621

numerical simulations, Transp Porous Media 129 (2) (2019) 449–466.622

[30] J. Wan, J. Wilson, Colloid transport in unsaturated porous media, Water Resour Res 30 (4) (1994)623

857–864. doi:10.1029/93wr03017.624

[31] N. K. Karadimitriou, S. M. Hassanizadeh, A review of micromodels and their use in two-phase flow625

studies, Vadose Zone Journal 11 (3) (2012) vzj2011.0072. doi:10.2136/vzj2011.0072.626

[32] N. Karadimitriou, V. Joekar-Niasar, O. Brizuela, Hydro-dynamic solute transport under two-phase flow627

conditions, Scientific reports 7 (1) (2017) 1–7.628
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