
HAL Id: hal-04777482
https://universite-paris-saclay.hal.science/hal-04777482v1

Submitted on 15 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of experimental vs simulated data to train
neural networks for speckle imaging data analysis

Chao-Yueh Yu, Marc Chammas, Hsin-Hon Lin, Frédéric Pain

To cite this version:
Chao-Yueh Yu, Marc Chammas, Hsin-Hon Lin, Frédéric Pain. Comparison of experimental vs simu-
lated data to train neural networks for speckle imaging data analysis. SPIE Photonics Europe, SPIE,
Apr 2024, Strasbourg, France. pp.37, �10.1117/12.3017586�. �hal-04777482�

https://universite-paris-saclay.hal.science/hal-04777482v1
https://hal.archives-ouvertes.fr


Comparison of experimental vs simulated data to train neural 
networks for speckle imaging data analysis. 

Chao-Yueh Yua, Marc Chammasb, Hsin-Hon Lina, and Frederic Painb 

aChang-Gung University, Department of Medical Imaging and Radiological Sciences, Taoyuan 
City, Taiwan; bUniversité Paris-Saclay, Institut d’Optique Graduate School, CNRS, Laboratoire 

Charles Fabry, 91127, Palaiseau, France 

ABSTRACT 

Multiple Laser Speckle contrast Imaging (MESI) is an imaging method that provides relative blood flow maps from the 
statistical analysis of the dynamic speckle patterns observed when a coherent source is used to illuminate a tissue that 
contains moving scatterers. The gold standard analysis of MESI data is done by pixelwise regression of the experimental 
images to a theoretical function of the contrast K as a function of the exposure time T and decorrelation time tc. This 
approach is computer intensive, and the duration required to obtain a single flow map is too long for "real-time" analysis 
of in vivo hemodynamics. In addition, the mathematical model used relies on assumptions that oversimplify the local flow 
within the object of study. We have evaluated as an alternative a method based on Convolutional Neural Networks (CNN) 
to directly infer blood flow maps from MESI data, bypassing the model based fitting procedure. The CNN approach is 
model-free and delivers blood flow maps several orders of magnitude faster than the classical pixelwise non-linear 
regression. Here, we have evaluated two different datasets of annotated speckle contrast images to train the neural 
networks. One is composed of simulated time integrated speckle while the other one is composed of experimental data 
acquired for microfluidic channels with controlled geometries and flows. The study aims at discussing the assets and limits 
of both approaches.  
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microfluidics flow phantoms, speckle patterns simulations  

 

1. INTRODUCTION  

Laser speckle imaging (LSCI) has been used in the past decades to image the blood flow at the surface of tissues either in 
preclinical or clinical applications1,2. Light from a laser diode is used to illuminate biological tissues and the backscattered 
light is recorded by a camera, providing an image of a interferometric pattern called speckle. When the object under 
illumination contains moving scatterers, the speckle pattern changes with time. Acquiring images of this time-varying 
patterns at a given exposure time leads to a blur, that is related to the rate of change of the pattern. To quantify the blur, 
LSCI relies on the computation of the local speckle contrast K, which is defined as the local standard deviation divided 
by the local mean of the pixel’s intensities. It has been shown that K is related to the decorrelation time τc of the moving 
scatterers, which in turn is inversely proportional to the velocities of the scatterers1. Multiple exposure speckle imaging 
(MESI) is a significantly improved variant of LSCI. It consists in acquiring sequentially images at increasing exposure 
times and rely on a model of K(T, tc) that includes the relative contribution of the static scatterers3. MESI was demonstrated 
to better account for the static scatterers contribution thus increasing the ability of the technique to estimate accurate 
changes of the flow over a wider range of flows4. However, MESI requires a more complex instrumentation to modulate 
the laser in both time and amplitude and the analysis is based on computer-intensive pixelwise non-linear fitting of the 
MESI-model to the data. This approach suffers from several flaws. First, the method is incompatible with short analysis 
times required by clinical protocols. Indeed, processing the MESI data acquired during a dynamic reperfusion protocol 
such as a post occlusive reactive hyperemia test at high spatial resolution would require at least several minutes. Second, 
the underlying mathematical MESI model is based on strong assumptions on the nature of the flow (ordered, unordered) 
and on the number of scattering events the detected photons (single, multiple). These assumptions cannot be verified a 
priori and it was shown experimentally in mice that in biological tissues, there exists a mix of flow regimes locally5. To 



overcome these issues, the use of machine learning has been proposed for fast, model-free MESI data analysis. The 
rationale is to bypass the non-linear fitting by using a neural network to directly infer the relative flow maps from MESI 
data6,7. The developed neural networks have been trained in a supervised manner using either simulated data or calibrated 
experimental data. Simulated data are fully characterized by nature and allow to consider many configurations. However, 
some experimental aspects are particularly difficult to simulate accurately because they are not known or well described. 
Contrarily, experimental data incorporate all instrumental aspects but are necessarily limited in terms of geometries and 
flows to few configurations. We investigate in this study the assets and drawbacks of each training method of CNN 
dedicated to MESI analysis.  

2. METHODS MESI IMAGER AND MICROFLUIDIC EXPERIMENTAL DATA  

The MESI imaging system is composed of a 634 nm laser diode (Shangai laser, China) with a maximum output power of 
400 mW and sCMOS camera (Orca Flash Hamamatsu, Japan). MESI data are acquired in the synthetic exposure approach 
with careful subtraction of noise contributions8. The microfluidic channels and set-up were described in detail previously9. 
Speckle images used to train the network were recorded for microfluidic channels with a rectangular section of 
40,60,80,100, 300 and 500 μm of widths and 75 μm of length10. The exposure times were set to 1, 2, 3, 5, 10, 15, 25, 50 
ms. We used 2% intralipid as the flowing media. Flows from 1 μl.min-1 up to 7 μl.min-1 (corresponding to velocities 
between 0.05 and 20mm.s-1) were controlled using a pressure controller (Fluigent, France). An inline flowmeter allowed 
to assess the real flow in the channels and provide feedback to the controller, ensuring highly stable and controlled flows. 
A database of experimental speckle contrast for different channels, flow and exposure times was built. For supervised 
learning, target images of local velocities were associated to each experimental image based on the measurement of the 
average flow in the channel during the experiment and the Poiseuille’s law7.  

Simulated time integrated speckle data.  

We have simulated time integrated speckle patterns and the corresponding speckle contrast images for the same 
configuration as the experimental data. The simulation parameters are the decorrelation time of the scatterers, the exposure 
times considered, the dimensions of the channel. The decorrelation times were set according to previous calibration of 
data analyzed with the non-linear fitting approach. In such, we could associate for each flow value in each channel a 
decorrelation time. In the channel, the media was supposed to be purely dynamic (no static scatterers) while outside the 
channels it was supposed to be entirely static. On the basis of direct in vivo experimental measurements of the decorrelation 
functions in mice brain11, the flow regime was assumed to be either unordered, with single scattering or ordered with 
multiple scattering, both resulting in the same decorrelation function g1(t). To match the experimental database, the 
number of pixels per speckle was set to 3. For both the experimental and simulated data an augmentation approach has 
been implemented, by rotating the data at different angles to avoid biasing the training if the vessel had always the same 
positioning within the annotated images.  

 

3. RESULTS 

The two types of speckle contrast databases obtained are illustrated on figure 1. Regarding the experimental data, some 
potential biases have been observed, such as reflection effects on the side of the channel leading to a “ghost channel” in 
the contrast image. In addition, some data could not be recorded for the smallest channel due to instrumental limitations. 
Indeed, it was not possible to record a stable flow in the 40 μm wide channel for the flows above 4μl/min-1. In addition, 
complementary experiments have shown the effect on the speckle contrast of instrument parameters such as the optical 
zoom used during the acquisitions. For the same flow in the same channel, changing the zoom modifies the depth of field 
and ultimately the corresponding speckle contrast values. Regarding the simulations, we simulated time integrated speckle 
contrast images with similar dimensions as the experimental ones (1920x1440 pixels). This process is computer intensive 
as millions of random numbers must be sampled and processed. On a standard computer, it took about 2 hours to simulate 
the time integrated patterns for all exposure times for one flow in one channel. For the same configuration, the simulated 



data present systematically lower contrast values compared to experimental ones. It is likely that the experimental data 
capture more variability of the signal due to instrumental noises and instabilities.  

 
Figure 1. Comparison of simulated and experimental data for a 40 µm wide channel, an exposure time of 5 ms and laminar flow of 
1 µl.min-1. Regions of interest in yellow on the images on top were used to plot corresponding profiles on the bottom.  
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