Textual Analysis for Video Memorability Prediction - Université Paris-Saclay
Communication Dans Un Congrès Année : 2023

Textual Analysis for Video Memorability Prediction

Résumé

This article presents the analysis carried out by the Japanese French Laboratory for Informatics (JFLI) and the National Institute of Informatics (NII) to understand what makes a video memorable. To do so, we first propose an analysis of the results obtained by two sequential models applied on visual and textual representations. We then study the manual descriptions and automatic captions in order to identify specificities in the textual representations of videos associated with a high memorability score. We show that they are described by longer and more precise texts (manual and automatic) than the videos associated with lower memorability scores, opening the way to research on the correlation between textual vagueness and video memorability.
Fichier principal
Vignette du fichier
MemorabilityPrediction.pdf (720.92 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04091024 , version 1 (07-05-2023)

Identifiants

  • HAL Id : hal-04091024 , version 1

Citer

Camille Guinaudeau, Andreu Girbau Xalabarder. Textual Analysis for Video Memorability Prediction. the 13th MediaEval Multimedia Benchmark Workshop, Jan 2023, Bergen, Norway. ⟨hal-04091024⟩
19 Consultations
32 Téléchargements

Partager

More