Permutation Equivariant Deep Reinforcement Learning for Multi-Armed Bandit - Université Paris-Saclay
Communication Dans Un Congrès Année : 2024

Permutation Equivariant Deep Reinforcement Learning for Multi-Armed Bandit

Résumé

Permutation equivariance (PE) is a property widely present in mathematics and machine learning. Classic deep reinforcement learning (DRL) algorithms, such as Deep Q-Network (DQN), require thoroughly exploring the state space to achieve optimal performance. For a PE problem such as the Multi-Armed Bandit (MAB) problem, the PE property helps reduce the space that needs to be explored. This paper proposes PEDQN, a PE DRL framework based on DQN by applying a PE neural network structure. Our MAB experiments show that PEDQN has clear advantages compared to DQN with a fully connected network and achieves the same or better performance than UCB1 when tested in the same environment as the training.
Fichier principal
Vignette du fichier
PE_DQN_ICTAI.pdf (2.6 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04787072 , version 1 (16-11-2024)

Identifiants

  • HAL Id : hal-04787072 , version 1

Citer

Zhuofan Xu, Benedikt Bollig, Matthias Függer, Thomas Nowak. Permutation Equivariant Deep Reinforcement Learning for Multi-Armed Bandit. 36th IEEE International Conference on Tools with Artificial Intelligence (ICTAI), Oct 2024, Herndon, United States. ⟨hal-04787072⟩
0 Consultations
0 Téléchargements

Partager

More