Low-Mach hybrid lattice Boltzmann-finite difference solver for combustion in complex flows - Université Paris-Saclay Accéder directement au contenu
Article Dans Une Revue Physics of Fluids Année : 2020

Low-Mach hybrid lattice Boltzmann-finite difference solver for combustion in complex flows

Résumé

A hybrid solver for low-Mach combustion simulations has been proposed and validated through different test-cases in a previous publication [Hosseini et al., “Hybrid lattice Boltzmann-finite difference model for low Mach number combustion simulation,” Combust. Flame 209, 394–404 (2019)]. However, all the considered configurations were laminar, far from realistic applications. To check the performance of this approach for more complex physical processes, the developed solver is used here to model a variety of transitional and turbulent reacting flows. It is first used to compute an established benchmark, the Taylor–Green vortex, for (a) an iso-thermal single-component fluid, (b) a thermal non-reacting mixture, and (c) a thermal reacting mixture (hydrogen/air flame). Detailed comparisons of the results against a high-order in-house direct numerical simulation solver show that the proposed hybrid lattice Boltzmann solver correctly captures the dynamics of the flow at relatively low numerical cost. This same solver is then used to model the interaction of a methane/air flame with a vortex pair, revealing different interaction regimes of interest for turbulent combustion models. It is further employed to model the interaction of an expanding circular flame kernel with a pair of vortices and correctly captures the characteristic regimes. To showcase its ability to deal with turbulent flows, it is finally applied to a homogeneous isotropic turbulent configuration.
Fichier non déposé

Dates et versions

hal-04582273 , version 1 (21-05-2024)

Identifiants

Citer

S. Hosseini, A. Abdelsamie, Nasser Darabiha, Dominique Thevenin. Low-Mach hybrid lattice Boltzmann-finite difference solver for combustion in complex flows. Physics of Fluids, 2020, 32 (7), ⟨10.1063/5.0015034⟩. ⟨hal-04582273⟩
21 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Mastodon Facebook X LinkedIn More